Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Petko M. Petkov is active.

Publication


Featured researches published by Petko M. Petkov.


PLOS Genetics | 2008

The recombinational anatomy of a mouse chromosome.

Kenneth Paigen; Jin P. Szatkiewicz; Kathryn Sawyer; Nicole Leahy; Emil D. Parvanov; Siemon H. S. Ng; Joel H. Graber; Karl W. Broman; Petko M. Petkov

Among mammals, genetic recombination occurs at highly delimited sites known as recombination hotspots. They are typically 1–2 kb long and vary as much as a 1,000-fold or more in recombination activity. Although much is known about the molecular details of the recombination process itself, the factors determining the location and relative activity of hotspots are poorly understood. To further our understanding, we have collected and mapped the locations of 5,472 crossover events along mouse Chromosome 1 arising in 6,028 meioses of male and female reciprocal F1 hybrids of C57BL/6J and CAST/EiJ mice. Crossovers were mapped to a minimum resolution of 225 kb, and those in the telomere-proximal 24.7 Mb were further mapped to resolve individual hotspots. Recombination rates were evolutionarily conserved on a regional scale, but not at the local level. There was a clear negative-exponential relationship between the relative activity and abundance of hotspot activity classes, such that a small number of the most active hotspots account for the majority of recombination. Females had 1.2× higher overall recombination than males did, although the sex ratio showed considerable regional variation. Locally, entirely sex-specific hotspots were rare. The initiation of recombination at the most active hotspot was regulated independently on the two parental chromatids, and analysis of reciprocal crosses indicated that parental imprinting has subtle effects on recombination rates. It appears that the regulation of mammalian recombination is a complex, dynamic process involving multiple factors reflecting species, sex, individual variation within species, and the properties of individual hotspots.


Science | 2016

Health and population effects of rare gene knockouts in adult humans with related parents

Vagheesh Narasimhan; Karen A. Hunt; Dan Mason; Christopher L. Baker; Konrad J. Karczewski; Michael R. Barnes; Anthony H. Barnett; Christopher M. Bates; Srikanth Bellary; Nicholas A. Bockett; Kristina Giorda; Chris Griffiths; Harry Hemingway; Zhilong Jia; M. Ann Kelly; Hajrah A. Khawaja; Monkol Lek; Shane McCarthy; Rosie McEachan; Anne H. O’Donnell-Luria; Kenneth Paigen; Constantinos A. Parisinos; Eamonn Sheridan; Laura Southgate; Louise Tee; Mark G. Thomas; Yali Xue; Michael Schnall-Levin; Petko M. Petkov; Chris Tyler-Smith

Rare gene knockouts in adult humans On average, most peoples genomes contain approximately 100 completely nonfunctional genes. These loss-of-function (LOF) mutations tend to be rare and/or occur only as a single copy within individuals. Narasimhan et al. investigated LOF in a Pakistani population with high levels of consanguinity. Examining LOF alleles that were identical by descent, they found, as expected, an absence of homozygote LOF for certain protein-coding genes. However, they also identified many homozygote LOF alleles with no apparent deleterious phenotype, including some that were expected to confer genetic disease. Indeed, one family had lost the recombination-associated gene PRDM9. Science, this issue p. 474 The total loss of protein-coding genes, even those with the potential to confer genetic diseases, can be tolerated. Examining complete gene knockouts within a viable organism can inform on gene function. We sequenced the exomes of 3222 British adults of Pakistani heritage with high parental relatedness, discovering 1111 rare-variant homozygous genotypes with predicted loss of function (knockouts) in 781 genes. We observed 13.7% fewer homozygous knockout genotypes than we expected, implying an average load of 1.6 recessive-lethal-equivalent loss-of-function (LOF) variants per adult. When genetic data were linked to the individuals’ lifelong health records, we observed no significant relationship between gene knockouts and clinical consultation or prescription rate. In this data set, we identified a healthy PRDM9-knockout mother and performed phased genome sequencing on her, her child, and control individuals. Our results show that meiotic recombination sites are localized away from PRDM9-dependent hotspots. Thus, natural LOF variants inform on essential genetic loci and demonstrate PRDM9 redundancy in humans.


PLOS Genetics | 2005

Evidence of a Large-Scale Functional Organization of Mammalian Chromosomes

Petko M. Petkov; Joel H. Graber; Gary A. Churchill; Keith DiPetrillo; Benjamin L. King; Kenneth Paigen

Evidence from inbred strains of mice indicates that a quarter or more of the mammalian genome consists of chromosome regions containing clusters of functionally related genes. The intense selection pressures during inbreeding favor the coinheritance of optimal sets of alleles among these genetically linked, functionally related genes, resulting in extensive domains of linkage disequilibrium (LD) among a set of 60 genetically diverse inbred strains. Recombination that disrupts the preferred combinations of alleles reduces the ability of offspring to survive further inbreeding. LD is also seen between markers on separate chromosomes, forming networks with scale-free architecture. Combining LD data with pathway and genome annotation databases, we have been able to identify the biological functions underlying several domains and networks. Given the strong conservation of gene order among mammals, the domains and networks we find in mice probably characterize all mammals, including humans.


Journal of Bone and Mineral Research | 2005

Quantitative Trait Loci That Determine BMD in C57BL/6J and 129S1/SvImJ Inbred Mice.

Naoki Ishimori; Renhua Li; Kenneth A. Walsh; Ron Korstanje; Jarod Rollins; Petko M. Petkov; Mathew T. Pletcher; Tim Wiltshire; Leah Rae Donahue; Clifford J. Rosen; Wesley G. Beamer; Gary A. Churchill; Beverly Paigen

BMD is highly heritable; however, little is known about the genes. To identify loci controlling BMD, we conducted a QTL analysis in a (B6 × 129) F2 population of mice. We report on additional QTLs and also narrow one QTL by combining the data from multiple crosses and through haplotype analysis.


G3: Genes, Genomes, Genetics | 2016

The Mouse Universal Genotyping Array: From Substrains to Subspecies

Andrew P. Morgan; Chen Ping Fu; Chia Yu Kao; Catherine E. Welsh; John P. Didion; Liran Yadgary; Leeanna Hyacinth; Martin T. Ferris; Timothy A. Bell; Darla R. Miller; Paola Giusti-Rodriguez; Randal J. Nonneman; Kevin D. Cook; Jason K. Whitmire; Lisa E. Gralinski; Mark P. Keller; Alan D. Attie; Gary A. Churchill; Petko M. Petkov; Patrick F. Sullivan; J. Brennan; Leonard McMillan; Fernando Pardo-Manuel de Villena

Genotyping microarrays are an important resource for genetic mapping, population genetics, and monitoring of the genetic integrity of laboratory stocks. We have developed the third generation of the Mouse Universal Genotyping Array (MUGA) series, GigaMUGA, a 143,259-probe Illumina Infinium II array for the house mouse (Mus musculus). The bulk of the content of GigaMUGA is optimized for genetic mapping in the Collaborative Cross and Diversity Outbred populations, and for substrain-level identification of laboratory mice. In addition to 141,090 single nucleotide polymorphism probes, GigaMUGA contains 2006 probes for copy number concentrated in structurally polymorphic regions of the mouse genome. The performance of the array is characterized in a set of 500 high-quality reference samples spanning laboratory inbred strains, recombinant inbred lines, outbred stocks, and wild-caught mice. GigaMUGA is highly informative across a wide range of genetically diverse samples, from laboratory substrains to other Mus species. In addition to describing the content and performance of the array, we provide detailed probe-level annotation and recommendations for quality control.


PLOS Genetics | 2015

A Multi-Megabase Copy Number Gain Causes Maternal Transmission Ratio Distortion on Mouse Chromosome 2

John P. Didion; Andrew P. Morgan; Amelia M.-F. Clayshulte; Rachel C. McMullan; Liran Yadgary; Petko M. Petkov; Timothy A. Bell; Daniel M. Gatti; James J. Crowley; Kunjie Hua; David L. Aylor; Ling Bai; Mark Calaway; Elissa J. Chesler; John E. French; Thomas R. Geiger; Terry J. Gooch; Theodore Garland; Alison H. Harrill; Kent W. Hunter; Leonard McMillan; Matt Holt; Darla R. Miller; Deborah A. O'Brien; Kenneth Paigen; Wenqi Pan; Lucy B. Rowe; Ginger D. Shaw; Petr Simecek; Patrick F. Sullivan

Significant departures from expected Mendelian inheritance ratios (transmission ratio distortion, TRD) are frequently observed in both experimental crosses and natural populations. TRD on mouse Chromosome (Chr) 2 has been reported in multiple experimental crosses, including the Collaborative Cross (CC). Among the eight CC founder inbred strains, we found that Chr 2 TRD was exclusive to females that were heterozygous for the WSB/EiJ allele within a 9.3 Mb region (Chr 2 76.9 – 86.2 Mb). A copy number gain of a 127 kb-long DNA segment (designated as responder to drive, R2d) emerged as the strongest candidate for the causative allele. We mapped R2d sequences to two loci within the candidate interval. R2d1 is located near the proximal boundary, and contains a single copy of R2d in all strains tested. R2d2 maps to a 900 kb interval, and the number of R2d copies varies from zero in classical strains (including the mouse reference genome) to more than 30 in wild-derived strains. Using real-time PCR assays for the copy number, we identified a mutation (R2d2WSBdel1) that eliminates the majority of the R2d2WSB copies without apparent alterations of the surrounding WSB/EiJ haplotype. In a three-generation pedigree segregating for R2d2WSBdel1, the mutation is transmitted to the progeny and Mendelian segregation is restored in females heterozygous for R2d2WSBdel1, thus providing direct evidence that the copy number gain is causal for maternal TRD. We found that transmission ratios in R2d2WSB heterozygous females vary between Mendelian segregation and complete distortion depending on the genetic background, and that TRD is under genetic control of unlinked distorter loci. Although the R2d2WSB transmission ratio was inversely correlated with average litter size, several independent lines of evidence support the contention that female meiotic drive is the cause of the distortion. We discuss the implications and potential applications of this novel meiotic drive system.


Epigenetics & Chromatin | 2015

Affinity-seq detects genome-wide PRDM9 binding sites and reveals the impact of prior chromatin modifications on mammalian recombination hotspot usage

Michael D. Walker; Timothy Billings; Christopher L. Baker; Natalie Powers; Hui Tian; Ruth L. Saxl; Kwangbom Choi; Matthew A. Hibbs; Gregory W. Carter; Mary Ann Handel; Kenneth Paigen; Petko M. Petkov

BackgroundGenetic recombination plays an important role in evolution, facilitating the creation of new, favorable combinations of alleles and the removal of deleterious mutations by unlinking them from surrounding sequences. In most mammals, the placement of genetic crossovers is determined by the binding of PRDM9, a highly polymorphic protein with a long zinc finger array, to its cognate binding sites. It is one of over 800 genes encoding proteins with zinc finger domains in the human genome.ResultsWe report a novel technique, Affinity-seq, that for the first time identifies both the genome-wide binding sites of DNA-binding proteins and quantitates their relative affinities. We have applied this in vitro technique to PRDM9, the zinc-finger protein that activates genetic recombination, obtaining new information on the regulation of hotspots, whose locations and activities determine the recombination landscape. We identified 31,770 binding sites in the mouse genome for the PRDM9Dom2 variant. Comparing these results with hotspot usage in vivo, we find that less than half of potential PRDM9 binding sites are utilized in vivo. We show that hotspot usage is increased in actively transcribed genes and decreased in genomic regions containing H3K9me2/3 histone marks or bound to the nuclear lamina.ConclusionsThese results show that a major factor determining whether a binding site will become an active hotspot and what its activity will be are constraints imposed by prior chromatin modifications on the ability of PRDM9 to bind to DNA in vivo. These constraints lead to the presence of long genomic regions depleted of recombination.


Chromosoma | 2015

Nuclear localization of PRDM9 and its role in meiotic chromatin modifications and homologous synapsis

Fengyun Sun; Yasuhiro Fujiwara; Laura G. Reinholdt; Jianjun Hu; Ruth L. Saxl; Christopher L. Baker; Petko M. Petkov; Kenneth Paigen; Mary Ann Handel

Developmental progress of germ cells through meiotic phases is closely tied to ongoing meiotic recombination. In mammals, recombination preferentially occurs in genomic regions known as hotspots; the protein that activates these hotspots is PRDM9, containing a genetically variable zinc finger (ZNF) domain and a PR-SET domain with histone H3K4 trimethyltransferase activity. PRDM9 is required for fertility in mice, but little is known about its localization and developmental dynamics. Application of spermatogenic stage-specific markers demonstrates that PRDM9 accumulates in male germ cell nuclei at pre-leptonema to early leptonema but is no longer detectable in nuclei by late zygonema. By the pachytene stage, PRDM9-dependent histone H3K4 trimethyl marks on hotspots also disappear. PRDM9 localizes to nuclei concurrently with the deposition of meiotic cohesin complexes, but is not required for incorporation of cohesin complex proteins into chromosomal axial elements, or accumulation of normal numbers of RAD51 foci on meiotic chromatin by late zygonema. Germ cells lacking PRDM9 exhibit inefficient homology recognition and synapsis, with aberrant repair of meiotic DNA double-strand breaks and transcriptional abnormalities characteristic of meiotic silencing of unsynapsed chromatin. Together, these results on the developmental time course for nuclear localization of PRDM9 establish its direct window of function and demonstrate the independence of chromosome axial element formation from the concurrent PRDM9-mediated activation of recombination hotspots.


PLOS ONE | 2010

Patterns of Recombination Activity on Mouse Chromosome 11 Revealed by High Resolution Mapping

Timothy Billings; Evelyn E. Sargent; Jin P. Szatkiewicz; Nicole Leahy; Il Youp Kwak; Nazira Bektassova; Michael D. Walker; Terry Hassold; Joel H. Graber; Karl W. Broman; Petko M. Petkov

The success of high resolution genetic mapping of disease predisposition and quantitative trait loci in humans and experimental animals depends on the positions of key crossover events around the gene of interest. In mammals, the majority of recombination occurs at highly delimited 1–2 kb long sites known as recombination hotspots, whose locations and activities are distributed unevenly along the chromosomes and are tightly regulated in a sex specific manner. The factors determining the location of hotspots started to emerge with the finding of PRDM9 as a major hotspot regulator in mammals, however, additional factors modulating hotspot activity and sex specificity are yet to be defined. To address this limitation, we have collected and mapped the locations of 4829 crossover events occurring on mouse chromosome 11 in 5858 meioses of male and female reciprocal F1 hybrids of C57BL/6J and CAST/EiJ mice. This chromosome was chosen for its medium size and high gene density and provided a comparison with our previous analysis of recombination on the longest mouse chromosome 1. Crossovers were mapped to an average resolution of 127 kb, and thirteen hotspots were mapped to <8 kb. Most crossovers occurred in a small number of the most active hotspots. Females had higher recombination rate than males as a consequence of differences in crossover interference and regional variation of sex specific rates along the chromosome. Comparison with chromosome 1 showed that recombination events tend to be positioned in similar fashion along the centromere-telomere axis but independently of the local gene density. It appears that mammalian recombination is regulated on at least three levels, chromosome-wide, regional, and at individual hotspots, and these regulation levels are influenced by sex and genetic background but not by gene content.


Molecular Biology of the Cell | 2017

PRDM9 interactions with other proteins provide a link between recombination hotspots and the chromosomal axis in meiosis

Emil D. Parvanov; Hui Tian; Timothy Billings; Ruth L. Saxl; Catrina Spruce; Rakesh Aithal; Lumir Krejci; Kenneth Paigen; Petko M. Petkov

Meiotic recombination hotspots activated by PRDM9 are associated with the chromosomal axis and synaptonemal complex via their interaction with other proteins, including CDYL, EHMT2, EWSR1, and CXXC1.

Collaboration


Dive into the Petko M. Petkov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jin P. Szatkiewicz

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Karl W. Broman

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Andrew P. Morgan

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Benjamin L. King

Mount Desert Island Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar

Beverly Paigen

Children's Hospital Oakland Research Institute

View shared research outputs
Top Co-Authors

Avatar

Darla R. Miller

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

John P. Didion

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Leonard McMillan

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge