Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Petr Müller.
The Journal of Pathology | 2005
Rudolf Nenutil; J Smardova; S Pavlova; Z Hanzelkova; Petr Müller; P Fabian; Roman Hrstka; P Janotova; M Radina; David P. Lane; Philip J. Coates; Borivoj Vojtesek
Mutation and/or loss of the TP53 tumour suppressor gene is the single most common genetic abnormality in human cancer. The majority of TP53 mutations lead to stabilization of the protein, so that immunohistochemical staining for p53 can suggest mutation status in many cases. However, various false‐positive and false‐negative situations mean that simple immunostaining for p53 is not informative in a substantial number of tumours. In the present study, a series of 119 human cancers were immunostained using a highly sensitive technique that detects the low levels of wild‐type protein expressed in normal cells, such that homozygous gene deletion or non‐sense TP53 mutation can be identified by an absence of staining. TP53 gene status was also assessed using FASAY as a genetic/functional screen and in selected cases by direct sequencing. A quantitative scoring system was employed to assess p53 levels, and p53 post‐translational modification was evaluated using antibodies that detect specific phosphorylation sites. Phosphorylated p53 correlated with total p53 levels and did not improve the prediction of TP53 mutation status. The transcriptional activity of TP53 was determined by staining for two downstream target genes, p21WAF1 and MDM2, and statistical correlations between MDM2/p21WAF1 and p53 were found in tumours with wild‐type, but not mutant TP53. Measurement of staining for p53 and MDM2 accurately identifies the TP53 status of tumours. This simple and cost‐effective method, applicable to automated staining and quantitation methods, improves the identification of TP53 status over standard methods for p53 immunostaining and provides information about tumour p53 phenotype that is complementary to genotyping data. Copyright
Oncogene | 2013
Petr Müller; E Ruckova; P Halada; Philip J. Coates; Roman Hrstka; David P. Lane; Borivoj Vojtesek
Heat shock proteins Hsp90 and Hsp70 facilitate protein folding but can also direct proteins for ubiquitin-mediated degradation. The mechanisms regulating these opposite activities involve Hsp binding to co-chaperones including CHIP and HOP at their C-termini. We demonstrated that the extreme C-termini of Hsp70 and Hsp90 contain phosphorylation sites targeted by kinases including CK1, CK2 and GSK3-β in vitro. The phosphorylation of Hsp90 and Hsp70 prevents binding to CHIP and thus enhances binding to HOP. Highly proliferative cells contain phosphorylated chaperones in complex with HOP and phospho-mimetic and non-phosphorylable Hsp mutant proteins show that phosphorylation is directly associated with increased proliferation rate. We also demonstrate that primary human cancers contain high levels of phosphorylated chaperones and show increased levels of HOP protein and mRNA. These data identify C-terminal phosphorylation of Hsp70 and Hsp90 as a switch for regulating co-chaperone binding and indicate that cancer cells possess an elevated protein folding environment by the concerted action of co-chaperone expression and chaperone modifications. In addition to identifying the pathway responsible for regulating chaperone-mediated protein folding/degradation balances in normal cells, the data provide novel mechanisms to account for the aberrant chaperone activities observed in human cancer cells and have implications for the application of anti-chaperone therapies in cancer treatment.
Oncogene | 2008
Petr Müller; Roman Hrstka; David Coomber; David P. Lane; Borivoj Vojtesek
p53 missense mutant proteins commonly show increased stability compared to wild-type p53, which is thought to depend largely on the inability of mutant p53 to induce the ubiquitin ligase MDM2. However, recent work using mouse models has shown that the accumulation of mutant p53 occurs only in tumour cells, indicating that stabilization requires additional factors. To clarify the stabilization of p53 mutants in tumours, we analysed factors that affect their folding and degradation. Although all missense mutants that we studied are more stable than wild-type p53, the levels correlate with individual structural characteristics, which may be reflected in different gain-of-function properties. In the absence of Hsp90 activity, the less stable unfolded p53 mutants preferentially associate in a complex with Hsp70 and CHIP (carboxy terminus of Hsp70-interacting protein), and we show that CHIP is responsible for ubiquitination and degradation of these mutants. The demonstration of a complex interplay between Hsp90, Hsp70 and CHIP that regulate the stability of different p53 mutant proteins improves our understanding of the pro-tumorigenic effects of increased Hsp90 activity during multi-stage carcinogenesis. Understanding the roles of Hsp90, Hsp70 and CHIP in cancers may also provide an important avenue through which to target p53 to enhance treatment of human cancers.
Oncogene | 2010
Roman Hrstka; Rudolf Nenutil; Argyro Fourtouna; Magdalena M. Maslon; Catherine Naughton; Simon P. Langdon; Euan Murray; Alexey Larionov; Katarína Petráková; Petr Müller; M J Dixon; Ted R. Hupp; Borivoj Vojtesek
Transcriptomic screens in breast cancer cell lines have identified a protein named anterior gradient-2 (AGR2) as a potentially novel oncogene overexpressed in estrogen receptor (ER) positive tumours. As targeting the ER is responsible for major improvements in cure rates and prevention of breast cancers, we have evaluated the pro-oncogenic function of AGR2 in anti-hormone therapeutic responses. We show that AGR2 expression promotes cancer cell survival in clonogenic assays and increases cell proliferation and viability in a range of cancer cell lines. Chromatin immunoprecipitation and reporter assays indicate that AGR2 is transcriptionally activated by estrogen through ERα. However, we also found that AGR2 expression is elevated rather than inhibited in response to tamoxifen, thus identifying a novel mechanism to account for an agonistic effect of the drug on a specific pro-oncogenic pathway. Consistent with these data, clinical analysis indicates that AGR2 expression is related to treatment failure in ERα-positive breast cancers treated with tamoxifen. In contrast, AGR2 is one of the most highly suppressed genes in cancers of responding patients treated with the anti-hormonal drug letrozole. These data indicate that the AGR2 pathway represents a novel pro-oncogenic pathway for evaluation as anti-cancer drug developments, especially therapies that by-pass the agonist effects of tamoxifen.
Cellular and Molecular Life Sciences | 2005
Vladimír Kryštof; Iain W. McNae; Malcolm D. Walkinshaw; Peter Fischer; Petr Müller; B. Vojtěšek; Martin Orság; Libor Havlíček; Miroslav Strnad
Abstract.The study describes the protein kinase selectivity profile, as well as the binding mode of olomoucine II in the catalytic cleft of CDK2, as determined from cocrystal analysis. Apart from the main cell cycle-regulating kinase CDK2, olomoucine II exerts specificity for CDK7 and CDK9, with important functions in the regulation of RNA transcription. In vitro anticancer activity of the inhibitor in a panel of tumor cell lines shows a wide potency range with a slight preference for cells harboring a wild-type p53 gene. Cell-based assays confirmed activation of p53 protein levels and events leading to accumulation of p21WAF1. Additionally, in olomoucine II-treated cells, Mdm2 was found to form a complex with the ribosomal protein L11, which inhibits Mdm2 ubiquitin ligase function. We conclude that perturbations in RNA synthesis may lead to activation of p53 and that this contributes to the antiproliferative potency of cyclindependent kinase inhibitors.
Journal of Biological Chemistry | 2005
Petr Müller; Pavla Češková; Borek Vojtesek
Several signaling pathways that monitor the dynamic state of the cell converge on the tumor suppressor p53. The ability of p53 to process these signals and exert a dynamic downstream response in the form of cell cycle arrest and/or apoptosis is crucial for preventing tumor development. This p53 function is abrogated by p53 gene mutations leading to alteration of protein conformation. Hsp90 has been implicated in regulating both wild-type and mutant p53 conformations, and Hsp90 antagonists are effective for the therapy of some human tumors. Using cell lines that contain human tumor-derived temperature-sensitive p53 mutants we show that Hsp90 is required for both stabilization and reactivation of mutated p53 at the permissive temperature. A temperature decrease to 32 °C causes conversion to a protein conformation that is capable of inducing expression of MDM2, leading to reduction of reactivated p53 levels by negative feedback. Mutant reactivation is enhanced by simultaneous treatment with agents that stabilize the reactivated protein and is blocked by geldanamycin, a specific inhibitor of Hsp90 activity, indicating that Hsp90 antagonist therapy and therapies that act to reactivate mutant p53 will be incompatible. In contrast, Hsp90 is not required for maintaining wild-type p53 or for stabilizing wild-type p53 after treatment with chemotherapeutic agents, indicating that Hsp90 therapy might synergize with conventional therapies in patients with wild-type p53. Our data demonstrate the importance of the precise characterization of the interaction between p53 mutants and stress proteins, which may shed valuable information for fighting cancer via the p53 tumor suppressor pathway.
Cellular & Molecular Biology Letters | 2012
Eva Ruckova; Petr Müller; Rudolf Nenutil; Borivoj Vojtesek
Activation of the Hsp90 chaperone system is a characteristic of cancer cells. The regulation of chaperone activities involves their interaction with cochaperones; therefore we investigated the expression of Hsp70 and Hsp90 and their specific co-chaperones HOP and CHIP in cancer cell lines and primary cancers. Inhibition of Hsp90 by 17AAG increased the levels of Hsp70, Hsp90 and HOP but not CHIP mRNA in cancer cells. These changes are linked to activation of the HSF1 transcription factor and we show that the HOP promoter contains HSF1 binding sites, and that HSF1 binding to the HOP promoter is increased following 17AAG. The lack of alteration in the co-chaperone CHIP is explained by a lack of HSF response elements in the CHIP promoter. Non-proliferating cells expressed higher levels of CHIP and lower HOP, Hsp70 and Hsp90 levels compared to proliferating cells. Decreased expression of CHIP in proliferating cancer cells is in keeping with its proposed tumor suppressor properties, while over-expression of HOP in proliferating cells may contribute to excessive Hsp90 activity and stabilization of client proteins in tumors. In a panel of colorectal cancer samples, increased expression of Hsp70 and an increased ratio of HOP to CHIP were found, and were associated with decreased median survival. These data indicate that multiple changes occur in the chaperone/co-chaperone system in cancer that impact patient survival. It is likely that the ability to identify individual alterations to this system will be beneficial for treatment strategy decisions, particularly those that employ chaperone inhibitors.
Journal of Biological Chemistry | 2011
Vikram Narayan; Emmanuelle Pion; Vivien Landré; Petr Müller; Kathryn L. Ball
Characteristically for a regulatory protein, the IRF-1 tumor suppressor turns over rapidly with a half-life of between 20–40 min. This allows IRF-1 to reach new steady state protein levels swiftly in response to changing environmental conditions. Whereas CHIP (C terminus of Hsc70-interacting protein), appears to chaperone IRF-1 in unstressed cells, formation of a stable IRF-1·CHIP complex is seen under specific stress conditions. Complex formation, in heat- or heavy metal-treated cells, is accompanied by a decrease in IRF-1 steady state levels and an increase in IRF-1 ubiquitination. CHIP binds directly to an intrinsically disordered domain in the central region of IRF-1 (residues 106–140), and this site is sufficient to form a stable complex with CHIP in cells and to compete in trans with full-length IRF-1, leading to a reduction in its ubiquitination. The study reveals a complex relationship between CHIP and IRF-1 and highlights the role that direct binding or “docking” of CHIP to its substrate(s) can play in its mechanism of action as an E3 ligase.
Oncology | 2008
Daniel Krekáč; Kristyna Brozkova; Dana Knoflickova; Roman Hrstka; Petr Müller; Rudolf Nenutil; Borivoj Vojtesek
Objectives: SNP309 polymorphism (T-G) at the promoter region of MDM2 has been reported to cause increased binding affinity of transcriptional activator Sp1 followed by increased MDM2 both in mRNA and protein level. This model was proposed in vitro in the small panel of cell lines that indicated an on average 8-fold higher level of MDM2 mRNA in cells bearing the GG genotype. Methods: The incidence of SNP309 was determined in a cohort of 158 breast, 17 endometrium, 13 cervix and 45 ovarian cancer tissues by PCR-RFLP. The expression of p53 and MDM2 protein levels in the cohort was immunohistochemically investigated and statistically correlated with SNP309 polymorphism using Pearson χ2 and t test. Results: No significant difference was observed in the G allele incidence in breast cancer specimens compared to 149 noncancer controls. Furthermore, no statistically significant association of the G allele frequencies and p53 and MDM2 protein expression levels was observed. Conclusions: Our data clearly show neither association between SNP309 and cancer risk, nor the responsibility of G allele for increased MDM2 or decreased of p53 protein levels in human primary breast tumors.
Investigational New Drugs | 2010
Eva Roubalová; Veronika Kvardova; Roman Hrstka; Šárka Bořilová; Eva Michalová; Lenka Zdražilová Dubská; Petr Müller; Petr Sova; Bořivoj Vojtěšek
SummaryIn this study, we characterized the effects of LA-12 on tumor cell lines possessing wild type p53 and on p53-deficient/mutant cell lines and the results were compared to those obtained using cisplatin. We have determined changes of p53 levels, of its transcriptional activity, of its posttranscriptional modifications and the effect of the treatment on the cell cycle, on the induction of apoptosis and on gene expression. LA-12 induces weak accumulation of both transcriptionally active p53 tumor suppressor and of p21WAF1/CIP1 protein. LA-12 and cisplatin also significantly differ in their effects on apoptosis and cell cycle and on gene expression spectra in studied cell lines. LA-12 induces higher apoptosis levels in comparison with those induced by cisplatin, especially in p53-deficient H1299 cells and in MCF-7DD cells with transcriptionally inactive p53. We suggest that LA-12-mediated apoptosis is not fully dependent on p53. This confirms the therapeutic potential of LA-12 as a more potent cytostatic agent for both tumor cells expressing wild type p53 and for p53-deficient or mutant cells.