Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Petra E. de Jongh is active.

Publication


Featured researches published by Petra E. de Jongh.


Nature Materials | 2013

Towards stable catalysts by controlling collective properties of supported metal nanoparticles

Gonzalo Prieto; Jovana Zečević; Heiner Friedrich; Krijn P. de Jong; Petra E. de Jongh

Supported metal nanoparticles play a pivotal role in areas such as nanoelectronics, energy storage/conversion and as catalysts for the sustainable production of fuels and chemicals. However, the tendency of nanoparticles to grow into larger crystallites is an impediment for stable performance. Exemplarily, loss of active surface area by metal particle growth is a major cause of deactivation for supported catalysts. In specific cases particle growth might be mitigated by tuning the properties of individual nanoparticles, such as size, composition and interaction with the support. Here we present an alternative strategy based on control over collective properties, revealing the pronounced impact of the three-dimensional nanospatial distribution of metal particles on catalyst stability. We employ silica-supported copper nanoparticles as catalysts for methanol synthesis as a showcase. Achieving near-maximum interparticle spacings, as accessed quantitatively by electron tomography, slows down deactivation up to an order of magnitude compared with a catalyst with a non-uniform nanoparticle distribution, or a reference Cu/ZnO/Al(2)O(3) catalyst. Our approach paves the way towards the rational design of practically relevant catalysts and other nanomaterials with enhanced stability and functionality, for applications such as sensors, gas storage, batteries and solar fuel production.


Chemsuschem | 2010

Nanosizing and Nanoconfinement: New Strategies Towards Meeting Hydrogen Storage Goals

Petra E. de Jongh; Philipp Adelhelm

Hydrogen is expected to play an important role as an energy carrier in a future, more sustainable society. However, its compact, efficient, and safe storage is an unresolved issue. One of the main options is solid-state storage in hydrides. Unfortunately, no binary metal hydride satisfies all requirements regarding storage density and hydrogen release and uptake. Increasingly complex hydride systems are investigated, but high thermodynamic stabilities as well as slow kinetics and poor reversibility are important barriers for practical application. Nanostructuring by ball-milling is an established method to reduce crystallite sizes and increase reaction rates. Since five years attention has also turned to alternative preparation techniques that enable particle sizes below 10 nanometers and are often used in conjunction with porous supports or scaffolds. In this Review we discuss the large impact of nanosizing and -confinement on the hydrogen sorption properties of metal hydrides. We illustrate possible preparation strategies, provide insight into the reasons for changes in kinetics, reversibility and thermodynamics, and highlight important progress in this field. All in all we provide the reader with a clear view of how nanosizing and -confinement can beneficially affect the hydrogen sorption properties of the most prominent materials that are currently considered for solid-state hydrogen storage.


Angewandte Chemie | 2010

Zeolite Y Crystals with Trimodal Porosity as Ideal Hydrocracking Catalysts

Krijn P. de Jong; Jovana Zečević; Heiner Friedrich; Petra E. de Jongh; Metin Bulut; Sander van Donk; Régine Kenmogne; Annie Finiels; Vasile Hulea; François Fajula

Effektive Poren: Zeolith-Y-Kristalle mit Mikroporen (ca. 1 nm), kleinen (ca. 3 nm) und grosen Mesoporen (ca. 30 nm) wurden aus zuvor mit Dampf und Saure behandeltem Material durch Auslaugen mit Base erhalten. Die Zeolith-Y-Kristalle mit trimodaler Porositat (siehe elektronentomographische Aufnahme) zeigen beim Hydrocracking eine nahezu ideale Selektivitat fur und erhohte Ausbeuten an Kerosin und Diesel.


Chemical Reviews | 2009

Electron Tomography for Heterogeneous Catalysts and Related Nanostructured Materials

Heiner Friedrich; Petra E. de Jongh; Arie J. Verkleij; Krijn P. de Jong

The full potential in catalyst development will only be realized if characterization techniques are available that can probe materials with subnanometer resolution. One of the most employed techniques to image heterogeneous catalysts at the nanometer and subnanometer scale is transmission electron microscopy (TEM). As suggested by the name, TEM uses electrons transmitted through the object for imaging. Since the interaction between electrons and matter is very strong, only thin parts, commonly much less than a micron in thickness, are imaged. Since heterogeneous catalysts are, in most cases, structured on a much smaller length scale, the sample thickness can be reduced to TEM requirements by appropriate preparation techniques and is, therefore, no limitation.


Journal of Materials Chemistry | 2011

The impact of carbon materials on the hydrogen storage properties of light metal hydrides

Philipp Adelhelm; Petra E. de Jongh

The safe and efficient storage of hydrogen is still one of the remaining challenges towards fuel cell powered cars. Metal hydrides are a promising class of materials as they allow the storage of large amounts of hydrogen in a small volume at room temperature and low pressures. However, usually the kinetics of hydrogen release and uptake and the thermodynamic properties do not satisfy the requirements for practical applications. Therefore current research focuses on catalysis and the thermodynamic tailoring of metal hydride systems. Surprisingly, carbon materials used as additive or support are very effective to improve the hydrogen storage properties of metal hydrides allowing fast kinetics and even a change in the thermodynamic properties. Even though the underlying mechanisms are not always well understood, the beneficial effect is probably related to the peculiar structure of the carbon materials. This feature article gives an introduction to the different carbon materials, an overview of the preparation strategies to synthesize carbon/hydride nanocomposites, and highlights the beneficial effect of carbon by discussing two important hydrides: MgH2 and NaAlH4.


Angewandte Chemie | 2014

Design and synthesis of copper-cobalt catalysts for the selective conversion of synthesis gas to ethanol and higher alcohols.

Gonzalo Prieto; Steven Beijer; Miranda L. Smith; Ming He; Yuen Au; Zi Wang; David A. Bruce; Krijn P. de Jong; James J. Spivey; Petra E. de Jongh

Combining quantum-mechanical simulations and synthesis tools allows the design of highly efficient CuCo/MoO(x) catalysts for the selective conversion of synthesis gas (CO+H2) into ethanol and higher alcohols, which are of eminent interest for the production of platform chemicals from non-petroleum feedstocks. Density functional theory calculations coupled to microkinetic models identify mixed Cu-Co alloy sites, at Co-enriched surfaces, as ideal for the selective production of long-chain alcohols. Accordingly, a versatile synthesis route is developed based on metal nanoparticle exsolution from a molybdate precursor compound whose crystalline structure isomorphically accommodates Cu(2+) and Co(2+) cations in a wide range of compositions. As revealed by energy-dispersive X-ray nanospectroscopy and temperature-resolved X-ray diffraction, superior mixing of Cu and Co species promotes formation of CuCo alloy nanocrystals after activation, leading to two orders of magnitude higher yield to high alcohols than a benchmark CuCoCr catalyst. Substantiating simulations, the yield to high alcohols is maximized in parallel to the CuCo alloy contribution, for Co-rich surface compositions, for which Cu phase segregation is prevented.


Chemical Communications | 1999

Cu2O: a catalyst for the photochemical decomposition of water?

Petra E. de Jongh; Daniel Vanmaekelbergh; J.J. Kelly

The photoelectrochemical properties of polycrystalline Cu2O electrodes are discussed with regard to the application of the oxide as a photocatalytic material for water splitting.


Journal of the American Chemical Society | 2014

Control and impact of the nanoscale distribution of supported cobalt particles used in fischer-tropsch catalysis

Peter Munnik; Petra E. de Jongh; Krijn P. de Jong

The proximity of nanoparticles may affect the performance, in particular the stability, of supported metal catalysts. Short interparticle distances often arise during catalyst preparation by formation of aggregates. The cause of aggregation of cobalt nanoparticles during the synthesis of highly loaded silica-supported catalysts was found to originate from the drying process after impregnation of the silica grains with an aqueous cobalt nitrate precursor. Maximal spacing of the Co3O4 nanoparticles was obtained by fluid-bed drying at 100 °C in a N2 flow. Below this temperature, redistribution of liquid occurred before and during precipitation of a solid phase, leading to aggregation of the cobalt particles. At higher temperatures, nucleation and growth of Co3O4 occurred during the drying process also giving rise to aggregation. Fischer-Tropsch catalysis performed under industrially relevant conditions for unpromoted and Pt-promoted cobalt catalysts revealed that the size of aggregates (13-80 nm) of Co particles (size ~9 nm) had little effect on activity. Large aggregates exhibited higher selectivities to long chain alkanes, possibly related to higher olefin formation with subsequent readsorption and secondary chain growth. Most importantly, larger aggregates of Co particles gave rise to extensive migration of cobalt (up to 75%) to the external surface of the macroscopic catalyst grains (38-75 μm). Although particle size did not increase inside the silica support grains, migration of cobalt to the external surface partly led to particle growth, thus causing a loss of activity. This cobalt migration over macroscopic length scales was suppressed by maximizing the distance between nanoparticles over the support. Clearly, the nanoscale distribution of particles is an important design parameter of supported catalysts in particular and functional nanomaterials in general.


Journal of the American Chemical Society | 2010

Fundamentals of Melt Infiltration for the Preparation of Supported Metal Catalysts. The Case of Co/SiO2 for Fischer−Tropsch Synthesis

Tamara M. Eggenhuisen; Johan P. den Breejen; Dirkjan Verdoes; Petra E. de Jongh; Krijn P. de Jong

We explored melt infiltration of mesoporous silica supports to prepare supported metal catalysts with high loadings and controllable particle sizes. Melting of Co(NO(3))(2)·6H(2)O in the presence of silica supports was studied in situ with differential scanning calorimetry. The melting point depression of the intraporous phase was used to quantify the degree of pore loading after infiltration. Maximum pore-fillings corresponded to 70-80% of filled pore volume, if the intraporous phase was considered to be crystalline Co(NO(3))(2)·6H(2)O. However, diffraction was absent in XRD both from the ordered mesopores at low scattering angles and from crystalline cobalt nitrate phases at high angles. Hence, an amorphous, lower density, intraporous Co(NO(3))(2)·6H(2)O phase was proposed to fill the pores completely. Equilibration at 60 °C in a closed vessel was essential for successful melt infiltration. In an open crucible, dehydration of the precursor prior to infiltration inhibited homogeneous filling of support particles. The dispersion and distribution of Co(3)O(4) after calcination could be controlled using the same toolbox as for preparation via solution impregnation: confinement and the calcination gas atmosphere. Using ordered mesoporous silica supports as well as an industrial silica gel support, catalysts with Co metal loadings in the range of 10-22 wt % were prepared. The Co(3)O(4) crystallite sizes ranged from 4 to 10 nm and scaled with the support pore diameters. By calcination in N(2), pluglike nanoparticles were obtained that formed aggregates over several pore widths, while calcination in 1% NO/N(2) led to the formation of smaller individual nanoparticles. After reduction, the Co/SiO(2) catalysts showed high activity for the Fischer-Tropsch synthesis, illustrating the applicability of melt infiltration for supported catalyst preparation.


Nano Letters | 2009

Quantitative structural analysis of binary nanocrystal superlattices by electron tomography

Heiner Friedrich; Cédric Gommes; Karin Overgaag; Johannes D. Meeldijk; Wiel H. Evers; Bart de Nijs; Mark P. Boneschanscher; Petra E. de Jongh; Arie J. Verkleij; Krijn P. de Jong; Alfons van Blaaderen; Daniel Vanmaekelbergh

Binary nanocrystal superlattices, that is, ordered structures of two sorts of nanocolloids, hold promise for a series of functional materials with novel collective properties. Here we show that based on electron tomography a comprehensive, quantitative, three-dimensional characterization of these systems down to the single nanocrystal level can be achieved, which is key in understanding the emerging materials properties. On four binary lattices composed of PbSe, CdSe, and Au nanocrystals, we illustrate that ambiguous interpretations based on two-dimensional transmission electron microscopy can be prevented, nanocrystal sizes and superlattice parameters accurately determined, individual crystallographic point and plane defects studied, and the order/disorder at the top and bottom surfaces imaged. Furthermore, our results suggest that superlattice nucleation and growth occurred at the suspension/air interface and that the unit cells of some lattices are anisotropically deformed upon drying.

Collaboration


Dive into the Petra E. de Jongh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heiner Friedrich

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge