Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Petra Hildebrandt is active.

Publication


Featured researches published by Petra Hildebrandt.


Proteomics | 2010

Time-resolved quantitative proteome profiling of host–pathogen interactions: The response of Staphylococcus aureus RN1HG to internalisation by human airway epithelial cells

Frank Schmidt; Sandra S. Scharf; Petra Hildebrandt; Marc S. Burian; Jörg Bernhardt; Vishnu M. Dhople; Julia Kalinka; Melanie Gutjahr; Elke Hammer; Uwe Völker

Staphylococcus aureus is a versatile Gram‐positive pathogen that gains increasing importance due to the rapid spreading of resistances. Functional genomics technologies can provide new insights into the adaptational network of this bacterium and its response to environmental challenges. While functional genomics technologies, including proteomics, have been extensively used to study these phenomena in shake flask cultures, studies of bacteria from in vivo settings lack behind. Particularly for proteomics studies, the major bottleneck is the lack of sufficient proteomic coverage for low numbers of cells. In this study, we introduce a workflow that combines a pulse‐chase stable isotope labelling by amino acids in cell culture approach with high capacity cell sorting, on‐membrane digestion, and high‐sensitivity MS to detect and quantitatively monitor several hundred S. aureus proteins from a few million internalised bacteria. This workflow has been used in a proof‐of‐principle experiment to reveal changes in levels of proteins with a function in protection against oxidative damage and adaptation of cell wall synthesis in strain RN1HG upon internalisation by S9 human bronchial epithelial cells.


Proteomics | 2010

Proteomic analysis of doxorubicin-induced changes in the proteome of HepG2cells combining 2-D DIGE and LC-MS/MS approaches

Elke Hammer; Sandra Bien; Manuela Gesell Salazar; Leif Steil; Christian Scharf; Petra Hildebrandt; Henry W. S. Schroeder; Heyo K. Kroemer; Uwe Völker; Christoph A. Ritter

HepG‐2 cells are widely used as a cell model to investigate hepatocellular carcinomas and the effect of anticancer drugs such as doxorubicin, an effective antineoplastic agent, which has broad antitumoral activity against many solid and hematological malignancies. To investigate the effect of doxorubicin on the protein pattern, we used complementary proteomic workflows including 2‐D gel‐based and gel‐free methods. The analysis of crude HepG2 cell extracts by 2‐D DIGE provided data on 1835 protein spots which was then complemented by MS‐centered analysis of stable isotope labeling by amino acids in cell culture‐labeled cells. The monitoring of more than 1300 distinct proteins, including proteins of the membrane fraction provides the most comprehensive overview on the proteome of the widely used model cell line HepG2. Of the proteins monitored in total, 155 displayed doxorubicin‐induced changes in abundance. Functional analysis revealed major influences of doxorubicin on proteins involved in protein synthesis, DNA damage control, electron transport/mitochondrial function, and tumor growth. The strongest decrease in level was found for proteins involved in DNA replication and protein synthesis, whereas proteins with a function in DNA damage control and oxidative stress management displayed increased levels following treatment with doxorubicin compared with control cells. Furthermore, the doxorubicin‐associated increase in levels of multiple forms of keratins 8, 18, and 19 and other structural proteins revealed an influence on the cytoskeleton network.


Cell Calcium | 2009

Effects of Staphylococcus aureus-hemolysin A on calcium signalling in immortalized human airway epithelial cells

Stefanie Eichstaedt; Karoline Gäbler; Sabine Below; Christian Müller; Christian Kohler; Susanne Engelmann; Petra Hildebrandt; Uwe Völker; Michael Hecker; Jan-Peter Hildebrandt

Part of the innate defence of bronchial epithelia against bacterial colonization is secretion of salt and water which generally depends on coordinated actions of receptor-mediated cAMP- and calcium signalling. The hypothesis that Staphylococcus aureus-virulence factors interfere with endogenous signals in host cells was tested by measuring agonist-mediated changes in [Ca(2+)](i) in S9 cells upon pre-incubation with bacterial secretory products. S9 cells responded to mAChR-activation with calcium release from intracellular stores and capacitative calcium influx. Treatment of cells with culture supernatants of S. aureus (COL) or with recombinant alpha-hemolysin (Hla) resulted in time- and concentration-dependent changes in [Ca(2+)](i). High concentrations of Hla (2000 ng/ml) resulted in elevations in [Ca(2+)](i) elicited by accelerated calcium influx. A general Hla-mediated permeabilization of S9 cell membranes to small molecules, however, did not occur. Lower concentrations of Hla (200 ng/ml) induced a reduction in [Ca(2+)](i)-levels during the sustained plateau phase of receptor-mediated calcium signalling which was abolished by pre-incubation of cells with carboxyeosin, an inhibitor of the plasma membrane calcium-ATPase. This indicates that low concentrations of Hla change calcium signalling by accelerating pump-driven extrusion of Ca(2+) ions. In vivo, such a mechanism may result in attenuation of calcium-mediated cellular defence functions and facilitation of bacterial adherence to the bronchial epithelium.


Frontiers in Microbiology | 2014

Comparative proteome analysis reveals conserved and specific adaptation patterns of Staphylococcus aureus after internalization by different types of human non-professional phagocytic host cells.

Kristin Surmann; Stephan Michalik; Petra Hildebrandt; Philipp Gierok; Maren Depke; Lars Brinkmann; Jörg Bernhardt; Manuela Gesell Salazar; Zhi Sun; David Shteynberg; Ulrike Kusebauch; Robert L. Moritz; Bernd Wollscheid; Michael Lalk; Uwe Völker; Frank Schmidt

Staphylococcus aureus is a human pathogen that can cause a wide range of diseases. Although formerly regarded as extracellular pathogen, it has been shown that S. aureus can also be internalized by host cells and persist within these cells. In the present study, we comparatively analyzed survival and physiological adaptation of S. aureus HG001 after internalization by two human lung epithelial cell lines (S9 and A549), and human embryonic kidney cells (HEK 293). Combining enrichment of bacteria from host-pathogen assays by cell sorting and quantitation of the pathogens proteome by mass spectrometry we characterized S. aureus adaptation during the initial phase between 2.5 h and 6.5 h post-infection. Starting with about 2 × 106 bacteria, roughly 1450 S. aureus proteins, including virulence factors and metabolic enzymes were identified by spectral comparison and classical database searches. Most of the bacterial adaptation reactions, such as decreased levels of ribosomal proteins and metabolic enzymes or increased amounts of proteins involved in arginine and lysine biosynthesis, enzymes coding for terminal oxidases and stress responsive proteins or activation of the sigma factor SigB were observed after internalization into any of the three cell lines studied. However, differences were noted in central carbon metabolism including regulation of fermentation and threonine degradation. Since these differences coincided with different intracellular growth behavior, complementary profiling of the metabolome of the different non-infected host cell types was performed. This revealed similar levels of intracellular glucose but host cell specific differences in the amounts of amino acids such as glycine, threonine or glutamate. With this comparative study we provide an impression of the common and specific features of the adaptation of S. aureus HG001 to specific host cell environments as a starting point for follow-up studies with different strain isolates and regulatory mutants.


Journal of Biomedical Materials Research Part B | 2012

Magnesium used in bioabsorbable stents controls smooth muscle cell proliferation and stimulates endothelial cells in vitro.

Katrin Sternberg; Matthias Gratz; Kathleen Koeck; Joerg Mostertz; Robert Begunk; Marian Loebler; Beatrice Semmling; Anne Seidlitz; Petra Hildebrandt; Georg Homuth; Niels Grabow; Conny Tuemmler; Werner Weitschies; Klaus-Peter Schmitz; Heyo K. Kroemer

Magnesium-based bioabsorbable cardiovascular stents have been developed to overcome limitations of permanent metallic stents, such as late stent thrombosis. During stent degradation, endothelial and smooth muscle cells will be exposed to locally high magnesium concentrations with yet unknown physiological consequences. Here, we investigated the effects of elevated magnesium concentrations on human coronary artery endothelial and smooth muscle cell (HCAEC, HCASMC) growth and gene expression. In the course of 24 h after incubation with magnesium chloride solutions (1 or 10 mM) intracellular magnesium level in HCASMC raised from 0.55 ± 0.25 mM (1 mM) to 1.38 ± 0.95 mM (10 mM), while no increase was detected in HCAEC. Accordingly, a DNA microarray-based study identified 69 magnesium regulated transcripts in HCAEC, but 2172 magnesium regulated transcripts in HCASMC. Notably, a significant regulation of various growth factors and extracellular matrix components was observed. In contrast, viability and proliferation of HCAEC were increased at concentrations of up to 25 mM magnesium chloride, while in HCASMC viability and proliferation appeared to be unaffected. Taken together, our data indicate that magnesium halts smooth muscle cell proliferation and stimulates endothelial cell proliferation, which might translate into a beneficial effect in the setting of stent associated vascular injury.


Methods | 2013

A proteomics workflow for quantitative and time-resolved analysis of adaptation reactions of internalized bacteria.

Henrike Pförtner; Juliane Wagner; Kristin Surmann; Petra Hildebrandt; Sandra Ernst; Jörg Bernhardt; Melanie Gutjahr; Maren Depke; Ulrike Jehmlich; Vishnu M. Dhople; Elke Hammer; Leif Steil; Uwe Völker; Frank Schmidt

The development of a mass spectrometric workflow for the sensitive identification and quantitation of the kinetics of changes in metaproteomes, or in particular bacterial pathogens after internalization by host cells, is described. This procedure employs three essential stages: (i) SILAC pulse-chase labeling and infection assay; (ii) isolation of bacteria by GFP-assisted cell sorting; (iii) mass spectrometry-based proteome analysis. This approach displays greater sensitivity than techniques relying on conventional cell sorting and protein separation, due to an efficient combination of a filtration-based purification and an on-membrane digestion. We exemplary describe the use of the workflow for the identification and quantitation of the proteome of 10⁶ cells of Staphylococcus aureus after internalization by S9 human bronchial epithelial cells. With minor modifications, the workflow described can be applied for the characterization of other host-pathogen pairs, permitting identification and quantitation of hundreds of bacterial proteins over a time range of several hours post infection.


International Journal of Medical Microbiology | 2014

Activation of the alternative sigma factor SigB of Staphylococcus aureus following internalization by epithelial cells - an in vivo proteomics perspective.

Henrike Pförtner; Marc S. Burian; Stephan Michalik; Maren Depke; Petra Hildebrandt; Vishnu M. Dhople; Jan Pané-Farré; Michael Hecker; Frank Schmidt; Uwe Völker

Staphylococcus aureus is a versatile pathogen that can be a commensal but also cause a wide range of different infections. This broad disease spectrum is a reflection of the complex regulation of a large collection of virulence factors that together with metabolic fitness allow adaptation to different niches. The alternative sigma factor SigB is one of the global regulators mediating this adaptation. However, even if SigB contributes to expression of many virulence factors its importance for successful infection greatly varies with the strain and the infection setting analyzed. We have recently established a proteomics workflow that combines high efficiency cell sorting with sensitive mass spectrometry and allows monitoring of global proteome adaptations with roughly one million bacterial cells. Thus, we can now approach the adaptation of pathogens to the intracellular milieu. In the current study this proteomics workflow was used in conjunction with qRT-PCR and confocal fluorescence microscopy to comparatively analyze the adaptation of the S. aureus wild type strain HG001 and its isogenic sigB mutant to the intracellular milieu of human S9 bronchial epithelial cells. The study revealed fast and transient activation of SigB following internalization by human host cells and the requirement of SigB for intracellular growth. Loss of SigB triggered proteome changes reflecting the different residual growth rates of wild type and sigB mutant, respectively, the resistance to methicillin, adaptation to oxidative stress and protein quality control mechanisms.


Journal of Proteomics | 2015

A proteomic perspective of the interplay of Staphylococcus aureus and human alveolar epithelial cells during infection.

Kristin Surmann; Marjolaine Simon; Petra Hildebrandt; Henrike Pförtner; Stephan Michalik; Sebastian Stentzel; Leif Steil; Vishnu M. Dhople; Jörg Bernhardt; Rabea Schlüter; Maren Depke; Philipp Gierok; Michael Lalk; Barbara M. Bröker; Frank Schmidt; Uwe Völker

Infectious diseases caused by pathogens such as Staphylococcus aureus are still a major threat for human health. Proteome analyses allow detailed monitoring of the molecular interplay between pathogen and host upon internalization. However, the investigation of the responses of both partners is complicated by the large excess of host cell proteins compared to bacterial proteins as well as by the fact that only a fraction of host cells are infected. In the present study we infected human alveolar epithelial A549 cells with S. aureus HG001 pMV158GFP and separated intact bacteria from host cell debris or infected from non-infected A549 cells by cell sorting to enable detailed proteome analysis. During the first 6.5h in the intracellular milieu S. aureus displayed reduced growth rate, induction of the stringent response, adaptation to microaerobic conditions as well as cell wall stress. Interestingly, both truly infected host cells and those not infected but exposed to secreted S. aureus proteins and host cell factors showed differences in the proteome pattern compared to A549 cells which had never been in contact with S. aureus. However, adaptation reactions were more pronounced in infected compared to non-infected A549 bystander cells.


Cellular Microbiology | 2013

S. aureus haemolysin A-induced IL-8 and IL-6 release from human airway epithelial cells is mediated by activation of p38- and Erk-MAP kinases and additional, cell type-specific signalling mechanisms.

Susann Räth; Sabine Ziesemer; Amelie Witte; Anne Konkel; Christian P. Müller; Petra Hildebrandt; Uwe Völker; Jan-Peter Hildebrandt

Soluble virulence‐associated factors of Staphylococcus aureus like haemolysin A (Hla) induce secretion of chemo/cytokines from airway epithelial cells. To elucidate the potential roles of specific signalling pathways in this response, we treated 16HBE14o‐, S9 or A549 cells with recombinant Hla (rHla). In a dose‐dependent manner, rHla induced secretion of IL‐8 in all three cell types, but IL‐6 release only in 16HBE14o‐ and S9 cells. rHla‐mediated secretion of IL‐8 and IL‐6 was suppressed by pre‐incubation of cells with inhibitors of Erk type or p38 MAP kinases, indicating that activation of these signalling pathways is essential for IL‐8 release in all three cell types and for IL‐6 release in 16HBE14o‐ and S9 cells. The rHla‐mediated phosphorylation and activation of p38 MAP kinase seem to depend on elevations in [Ca2+]i, an early response in rHla‐treated cells. Inhibitors of calmodulin or calcium/calmodulin‐dependent kinase II attenuated rHla‐mediated release of IL‐8 in 16HBE14o‐ and A549 cells and of IL‐6 in 16HBE14o‐ cells. This indicates that rHla may mediate simultaneous activation of calmodulin‐dependent processes as additional prerequisites for chemo/cytokine secretion.However, the inhibitors of calmodulin‐dependent signalling did not affect rHla‐induced p38 MAP kinase phosphorylation, indicating that this pathway works in parallel with p38 MAP kinase.


PLOS ONE | 2010

Increased Expression of Bcl11b Leads to Chemoresistance Accompanied by G1 Accumulation

Piotr Grabarczyk; Viola Nähse; Martin Delin; Grzegorz K. Przybylski; Maren Depke; Petra Hildebrandt; Uwe Völker; Christian A. Schmidt

Background The expression of BCL11B was reported in T-cells, neurons and keratinocytes. Aberrations of BCL11B locus leading to abnormal gene transcription were identified in human hematological disorders and corresponding animal models. Recently, the elevated levels of Bcl11b protein have been described in a subset of squameous cell carcinoma cases. Despite the rapidly accumulating knowledge concerning Bcl11b biology, the contribution of this protein to normal or transformed cell homeostasis remains open. Methodology/Principal Findings Here, by employing an overexpression strategy we revealed formerly unidentified features of Bcl11b. Two different T-cell lines were forced to express BCL11B at levels similar to those observed in primary T-cell leukemias. This resulted in markedly increased resistance to radiomimetic drugs while no influence on death-receptor apoptotic pathway was observed. Apoptosis resistance triggered by BCL11B overexpression was accompanied by a cell cycle delay caused by accumulation of cells at G1. This cell cycle restriction was associated with upregulation of CDKN1C (p57) and CDKN2C (p18) cyclin dependent kinase inhibitors. Moreover, p27 and p130 proteins accumulated and the SKP2 gene encoding a protein of the ubiquitin-binding complex responsible for their degradation was repressed. Furthermore, the expression of the MYCN oncogene was silenced which resulted in significant depletion of the protein in cells expressing high BCL11B levels. Both cell cycle restriction and resistance to DNA-damage-induced apoptosis coincided and required the histone deacetylase binding N-terminal domain of Bcl11b. The sensitivity to genotoxic stress could be restored by the histone deacetylase inhibitor trichostatine A. Conclusions The data presented here suggest a potential role of BCL11B in tumor survival and encourage developing Bcl11b-inhibitory approaches as a potential tool to specifically target chemoresistant tumor cells.

Collaboration


Dive into the Petra Hildebrandt's collaboration.

Top Co-Authors

Avatar

Uwe Völker

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar

Frank Schmidt

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elke Hammer

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar

Vishnu M. Dhople

Centre for Cellular and Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leif Steil

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar

Michael Hecker

University of Greifswald

View shared research outputs
Researchain Logo
Decentralizing Knowledge