Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Petra M. Jakobs is active.

Publication


Featured researches published by Petra M. Jakobs.


American Heart Journal | 2008

Lamin A/C mutation analysis in a cohort of 324 unrelated patients with idiopathic or familial dilated cardiomyopathy

Sharie B. Parks; Jessica D. Kushner; Deirdre Nauman; Donna Burgess; Susan Ludwigsen; Amanda Peterson; Duanxiang Li; Petra M. Jakobs; M. Litt; Charles B. Porter; Peter S. Rahko; Ray E. Hershberger

BACKGROUND Lamin A/C mutations are a well-established cause of dilated cardiomyopathy (DCM), although their frequency has not been examined in a large cohort of patients. We sought to examine the frequency of mutations in LMNA, the gene encoding lamin A/C, in patients with idiopathic (IDC) or familial dilated cardiomyopathy (FDC). METHODS Clinical cardiovascular data, family histories, and blood samples were collected from 324 unrelated IDC probands, of whom 187 had FDC. DNA samples were sequenced for nucleotide alterations in LMNA. Likely protein-altering mutations were followed up by evaluating additional family members, when possible. RESULTS We identified 18 protein-altering LMNA variants in 19 probands or 5.9% of all cases (7.5% of FDC; 3.6% of IDC). Of the 18 alterations, 11 were missense (one present in 2 kindreds), 3 were nonsense, 3 were insertion/deletions, and 1 was a splice site alteration. Conduction system disease and DCM were common in carriers of LMNA variants. Unexpectedly, in 6 of the 19 kindreds with a protein-altering LMNA variant (32%), at least one affected family member was negative for the LMNA variant. CONCLUSIONS Lamin A/C variants were observed with a frequency of 5.9% in probands with DCM. The novel observation of FDC pedigrees in which not all affected individuals carry the putative disease-causing LMNA mutation suggests that some protein-altering LMNA variants are not causative or that some proportion of FDC may be because of multiple causative factors. These findings warrant increased caution in FDC research and molecular diagnostics.


Clinical and Translational Science | 2008

Coding sequence mutations identified in MYH7, TNNT2, SCN5A, CSRP3, LBD3, and TCAP from 313 patients with familial or idiopathic dilated cardiomyopathy.

Ray E. Hershberger; Sharie B. Parks; Jessica D. Kushner; Duanxiang Li; Susan Ludwigsen; Petra M. Jakobs; Deirdre Nauman; Donna Burgess; Julie Partain; M. Litt

Background: More than 20 genes have been reported to cause idiopathic and familial dilated cardiomyopathy (IDC/FDC), but the frequency of genetic causation remains poorly understood.


American Journal of Human Genetics | 2000

Autosomal-dominant congenital cataract associated with a deletion mutation in the human beaded filament protein gene BFSP2

Petra M. Jakobs; John F. Hess; Paul G. FitzGerald; Patricia L. Kramer; Richard G. Weleber; M. Litt

Congenital cataracts are a common major abnormality of the eye that frequently cause blindness in infants. At least one-third of all cases are familial; autosomal-dominant congenital cataract appears to be the most-common familial form in the Western world. Elsewhere, in family ADCC-3, we mapped an autosomal-dominant cataract gene to chromosome 3q21-q22, near the gene that encodes a lens-specific beaded filament protein gene, BFSP2. By sequencing the coding regions of BFSP2, we found that a deletion mutation, DeltaE233, is associated with cataracts in this family. This is the first report of an inherited cataract that is caused by a mutation in a cytoskeletal protein.


Journal of Biological Chemistry | 2008

Role for DNA Polymerase κ in the Processing of N2-N2-Guanine Interstrand Cross-links

Irina G. Minko; Michael B. Harbut; Ivan D. Kozekov; Albena Kozekova; Petra M. Jakobs; Susan B. Olson; Robb E. Moses; Thomas M. Harris; Carmelo J. Rizzo; R. Stephen Lloyd

Although there exists compelling genetic evidence for a homologous recombination-independent pathway for repair of interstrand cross-links (ICLs) involving translesion synthesis (TLS), biochemical support for this model is lacking. To identify DNA polymerases that may function in TLS past ICLs, oligodeoxynucleotides were synthesized containing site-specific ICLs in which the linkage was between N2-guanines, similar to cross-links formed by mitomycin C and enals. Here, data are presented that mammalian cell replication of DNAs containing these lesions was ∼97% accurate. Using a series of oligodeoxynucleotides that mimic potential intermediates in ICL repair, we demonstrate that human polymerase (pol) κ not only catalyzed accurate incorporation opposite the cross-linked guanine but also replicated beyond the lesion, thus providing the first biochemical evidence for TLS past an ICL. The efficiency of TLS was greatly enhanced by truncation of both the 5 ′ and 3 ′ ends of the nontemplating strand. Further analyses showed that although yeast Rev1 could incorporate a dCTP opposite the cross-linked guanine, no evidence was found for TLS by pol ζ or a pol ζ/Rev1 combination. Because pol κ was able to bypass these ICLs, biological evidence for a role for pol κ in tolerating the N2-N2-guanine ICLs was sought; both cell survival and chromosomal stability were adversely affected in pol κ-depleted cells following mitomycin C exposure. Thus, biochemical data and cellular studies both suggest a role for pol κ in the processing of N2-N2-guanine ICLs.


American Journal of Human Genetics | 2006

Mutations of Presenilin Genes in Dilated Cardiomyopathy and Heart Failure

Duanxiang Li; Sharie B. Parks; Jessica D. Kushner; Deirdre Nauman; Donna Burgess; Susan Ludwigsen; Julie Partain; Randal R. Nixon; Charles N. Allen; Robert P. Irwin; Petra M. Jakobs; M. Litt; Ray E. Hershberger

Two common disorders of the elderly are heart failure and Alzheimer disease (AD). Heart failure usually results from dilated cardiomyopathy (DCM). DCM of unknown cause in families has recently been shown to result from genetic disease, highlighting newly discovered disease mechanisms. AD is the most frequent neurodegenerative disease of older Americans. Familial AD is caused most commonly by presenilin 1 (PSEN1) or presenilin 2 (PSEN2) mutations, a discovery that has greatly advanced the field. The presenilins are also expressed in the heart and are critical to cardiac development. We hypothesized that mutations in presenilins may also be associated with DCM and that their discovery could provide new insight into the pathogenesis of DCM and heart failure. A total of 315 index patients with DCM were evaluated for sequence variation in PSEN1 and PSEN2. Families positive for mutations underwent additional clinical, genetic, and functional studies. A novel PSEN1 missense mutation (Asp333Gly) was identified in one family, and a single PSEN2 missense mutation (Ser130Leu) was found in two other families. Both mutations segregated with DCM and heart failure. The PSEN1 mutation was associated with complete penetrance and progressive disease that resulted in the necessity of cardiac transplantation or in death. The PSEN2 mutation showed partial penetrance, milder disease, and a more favorable prognosis. Calcium signaling was altered in cultured skin fibroblasts from PSEN1 and PSEN2 mutation carriers. These data indicate that PSEN1 and PSEN2 mutations are associated with DCM and heart failure and implicate novel mechanisms of myocardial disease.


Molecular Medicine | 1998

Subtyping analysis of Fanconi anemia by immunoblotting and retroviral gene transfer.

Michael Pulsipher; Gary M. Kupfer; Dieter Naf; Ahmed Suliman; Jeng Shin Lee; Petra M. Jakobs; Markus Grompe; Hans Joenje; Colin A. Sieff; Eva C. Guinan; Richard C. Mulligan; Alan D. D'Andrea

Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome with at least eight complementation groups (A–H). Two of the FA genes (FAA and FAC) have been cloned, and mutations in these genes account for approximately 80% of FA patients. Subtyping of FA patients is an important first step toward identifying candidates for FA gene therapy. In the current study, we analyzed a reference group of 26 FA patients of known subtype. Most of the patients (18/26) were confirmed as either type A or type C by immunoblot analysis with anti-FAA and anti-FAC antisera. In order to resolve the subtype of the remaining patients, we generated retroviral constructs expressing FAA and FAC for transduction of FA cell lines (pMMP-FAA and pMMP-FAC). The pMMP-FAA construct specifically complemented the abnormal phenotype of cell lines from FA-A patients, while pMMP-FAC complemented FA-C cells. In summary, the combination of immunoblot analysis and retroviral-mediated phenotypic correction of FA cells allows a rapid method of FA subtyping.


American Journal of Human Genetics | 2000

Localization of the Fanconi anemia complementation group D gene to a 200-kb region on chromosome 3p25.3.

James Hejna; Cynthia Timmers; Carol Reifsteck; Donald A. Bruun; Lora Lucas; Petra M. Jakobs; SuEllen Toth-Fejel; Nancy Unsworth; Susan L. Clemens; Dawn Garcia; Susan L. Naylor; Mathew J. Thayer; Susan B. Olson; Markus Grompe; Robb E. Moses

Fanconi anemia (FA) is a rare autosomal recessive disease manifested by bone-marrow failure and an elevated incidence of cancer. Cells taken from patients exhibit spontaneous chromosomal breaks and rearrangements. These breaks and rearrangements are greatly elevated by treatment of FA cells with the use of DNA cross-linking agents. The FA complementation group D gene (FANCD) has previously been localized to chromosome 3p22-26, by use of microcell-mediated chromosome transfer. Here we describe the use of noncomplemented microcell hybrids to identify small overlapping deletions that narrow the FANCD critical region. A 1.2-Mb bacterial-artificial-chromosome (BAC)/P1 contig was constructed, bounded by the marker D3S3691 distally and by the gene ATP2B2 proximally. The contig contains at least 36 genes, including the oxytocin receptor (OXTR), hOGG1, the von Hippel-Lindau tumor-suppressor gene (VHL), and IRAK-2. Both hOGG1 and IRAK-2 were excluded as candidates for FANCD. BACs were then used as probes for FISH analyses, to map the extent of the deletions in four of the noncomplemented microcell hybrid cell lines. A narrow region of common overlapping deletions limits the FANCD critical region to approximately 200 kb. The three candidate genes in this region are TIGR-A004X28, SGC34603, and AA609512.


Somatic Cell and Molecular Genetics | 1996

Immortalization of four new fanconi anemia fibroblast cell lines by an improved procedure

Petra M. Jakobs; P. Sahaayaruban; H. Saito; Carol Reifsteck; Susan B. Olson; H. Joenje; Robb E. Moses; Markus Grompe

Fanconi anemia (FA) is an autosomal recessive disease characterized by birth defects, progressive bone marrow failure and increased risk for leukemia. FA cells display chromosome breakage and increased cell killing in response to DNA crosslinking agents. At least 5 genes have been defined by cell complementation studies, but only one of these, FAC has been cloned to date. Efforts to map and isolate new FA genes by functional complementation have been hapered by the lack of immortalized FA fibroblast cell lines. Here we report the use of a novel immortalization strategy to create 4 new immortalized FA fibroblast lines, including one from the rare complementation group D.


Molecular Genetics and Metabolism | 2008

Mammalian SNM1 is Required for Genome Stability

Aaron Hemphill; D. Bruun; L. Thrun; Yassmine Akkari; Yumi Torimaru; K. Hejna; Petra M. Jakobs; J. Hejna; Stephen N. Jones; Susan B. Olson; Robb E. Moses

The protein encoded by SNM1 in Saccharomyces cerevisiae has been shown to act specifically in DNA interstrand crosslinks (ICL) repair. There are five mammalian homologs of SNM1, including Artemis, which is involved in V(D)J recombination. Cells from mice constructed with a disruption in the Snm1 gene are sensitive to the DNA interstrand crosslinker, mitomycin (MMC), as indicated by increased radial formation following exposure. The mice reproduce normally and have normal life spans. However, a partial perinatal lethality, not seen in either homozygous mutant alone, can be noted when the Snm1 disruption is combined with a Fancd2 disruption. To explore the role of hSNM1 and its homologs in ICL repair in human cells, we used siRNA depletion in human fibroblasts, with cell survival and chromosome radials as the end points for sensitivity following treatment with MMC. Depletion of hSNM1 increases sensitivity to ICLs as detected by both end points, while depletion of Artemis does not. Thus hSNM1 is active in maintenance of genome stability following ICL formation. To evaluate the epistatic relationship between hSNM1 and other ICL repair pathways, we depleted hSNM1 in Fanconi anemia (FA) cells, which are inherently sensitive to ICLs. Depletion of hSNM1 in an FA cell line produces additive sensitivity for MMC. Further, mono-ubiquitination of FANCD2, an endpoint of the FA pathway, is not disturbed by depletion of hSNM1 in normal cells. Thus, hSNM1 appears to represent a second pathway for genome stability, distinct from the FA pathway.


Molecular Genetics and Metabolism | 2008

ERCC1 is required for FANCD2 focus formation

Kevin McCabe; Aaron Hemphill; Yassmine Akkari; Petra M. Jakobs; Daniel Pauw; Susan B. Olson; Robb E. Moses; Markus Grompe

The rare genetic disorder Fanconi anemia, caused by a deficiency in any of at least thirteen identified genes, is characterized by cellular sensitivity to DNA interstrand crosslinks and genome instability. The excision repair cross complementing protein, ERCC1, first identified as a participant in nucleotide excision repair, appears to also act in crosslink repair, possibly in incision and at a later stage. We have investigated the relationship of ERCC1 to the Fanconi anemia pathway, using depletion of ERCC1 by siRNA in transformed normal human fibroblasts and fibroblasts from Fanconi anemia patients. We find that depletion of ERCC1 does not hinder formation of double strand breaks in crosslink repair as indexed by gammaH2AX. However, the monoubiquitination of FANCD2 protein in response to MMC treatment is decreased and the localization of FANCD2 to nuclear foci is eliminated. Arrest of DNA replication by hydroxyurea, producing double strand breaks without crosslinks, also requires ERRC1 for FANCD2 localization to nuclear foci. Our results support a role for ERCC1 after creation of a double strand break for full activation of the Fanconi anemia pathway.

Collaboration


Dive into the Petra M. Jakobs's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge