Petra Patakova
Institute of Chemical Technology in Prague
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Petra Patakova.
Biotechnology Advances | 2013
Petra Patakova; Michaela Linhova; Mojmír Rychtera; Leona Paulova; Karel Melzoch
This review emphasises the fact that studies of acetone-butanol-ethanol (ABE) fermentation by solventogenic clostridia cannot be limited to research on the strain Clostridium acetobutylicum ATCC 824. Various 1-butanol producing species of the genus Clostridium, which differ in their patterns of product formation and abilities to ferment particular carbohydrates or glycerol, are described. Special attention is devoted to species and strains that do not produce acetone naturally and to the utilisation of lactose, inulin, glycerol and mixtures of pentose and hexose carbohydrates. Furthermore, process-mapping tools based on different principles, including flow cytometry, DNA microarray analysis, mass spectrometry, Raman microscopy, FT-IR spectroscopy and anisotropy of electrical polarisability, which might facilitate fermentation control and a deeper understanding of ABE fermentation, are introduced. At present, the methods with the greatest potential are flow cytometry and transcriptome analysis. Flow cytometry can be used to visualise and capture cells within clostridial populations as they progress through the normal cell cycle, in which symmetric and asymmetric cell division phases alternate. Cell viability of a population of Clostridium pasteurianum NRRL B-598 was determined by flow cytometry. Transcriptome analysis has been used in various studies including the detection of genes expressed in solventogenic phase, at sporulation, in the stress response, to compare expression patterns of different strains or parent and mutant strains, for studies of catabolite repression, and for the detection of genes involved in the transport and metabolism of 11 different carbohydrates. Interestingly, the results of transcriptome analysis also challenge our earlier understanding of the role of the Spo0A regulator in initiation of solventogenesis in C. acetobutylicum ATCC 824. Lastly, the review describes other significant recent discoveries, including the deleterious effects of intracellular formic acid accumulation in C. acetobutylicum DSM 1731 cells on the metabolic switch from acidogenesis to solventogenesis and the development of a high-cell density continuous system using Clostridium saccharoperbutylacetonicum N1-4, in which 1-butanol productivity of 7.99 g/L/h was reached.
Biotechnology Advances | 2015
Leona Paulova; Petra Patakova; Barbora Branska; Mojmir Rychtera; Karel Melzoch
This review provides current information on the production of ethanol from lignocellulosic biomass, with the main focus on relationships between process design and efficiency, expressed as ethanol concentration, yield and productivity. In spite of unquestionable advantages of lignocellulosic biomass as a feedstock for ethanol production (availability, price, non-competitiveness with food, waste material), many technological bottlenecks hinder its wide industrial application and competitiveness with 1st generation ethanol production. Among the main technological challenges are the recalcitrant structure of the material, and thus the need for extensive pretreatment (usually physico-chemical followed by enzymatic hydrolysis) to yield fermentable sugars, and a relatively low concentration of monosaccharides in the medium that hinder the achievement of ethanol concentrations comparable with those obtained using 1st generation feedstocks (e.g. corn or molasses). The presence of both pentose and hexose sugars in the fermentation broth, the price of cellulolytic enzymes, and the presence of toxic compounds that can inhibit cellulolytic enzymes and microbial producers of ethanol are major issues. In this review, different process configurations of the main technological steps (enzymatic hydrolysis, fermentation of hexose/and or pentose sugars) are discussed and their efficiencies are compared. The main features, benefits and drawbacks of simultaneous saccharification and fermentation (SSF), simultaneous saccharification and fermentation with delayed inoculation (dSSF), consolidated bioprocesses (CBP) combining production of cellulolytic enzymes, hydrolysis of biomass and fermentation into one step, together with an approach combining utilization of both pentose and hexose sugars are discussed and compared with separate hydrolysis and fermentation (SHF) processes. The impact of individual technological steps on final process efficiency is emphasized and the potential for use of immobilized biocatalysts is considered.
Folia Microbiologica | 2010
Michaela Linhova; Petra Patakova; Jakub Lipovský; Petr Fribert; Leona Paulova; Mojmír Rychtera; Karel Melzoch
Clostridium pasteurianum forms acetic and butyric acids in an initial growth phase, which is a typical feature of clostridial acetone-butanol fermentation where an initial accumulation of acids is followed by production of solvents 1-butanol, acetone and ethanol. The initiation of the solvent production coupled with endospore formation leads to decrease of cell-wall thickness; thinner cell wall is more resistant against solvents and dyes. These changes can be observed by the method based on adaptation of Gram staining. The cell wall of G+ bacteria allows the entry of hexidium iodide and rhodamine 123, whereas the outer membrane of G− bacteria does not allow the uptake and therefore G+ bacteria are stained with higher fluorescence intensity than G− bacteria. The ratio of fluorescence intensity (FI) to forward scatter (FSC) was determined to correspond to G+ bacteria when clostridia were producing less solvents. The significant drop of the ratio FI to FSC to the level corresponding to G− bacteria is detected after initiation of solvent production.
PLOS ONE | 2015
Jan Kolek; Petra Patakova; Karel Melzoch; Karel Sigler; Tomáš Řezanka
Changes in membrane lipid composition of Clostridium pasteurianum NRRL B-598 were studied during butanol fermentation by lipidomic analysis, performed by high resolution electrospray ionization tandem mass spectrometry. The highest content of plasmalogen phospholipids correlated with the highest butanol productivity, which indicated a probable role of these compounds in the complex responses of cells toward butanol stress. A difference in the ratio of saturated to unsaturated fatty acids was found between the effect of butanol produced by the cells and butanol added to the medium. A decrease in the proportion of saturated fatty acids during conventional butanol production was observed while a rise in the content of these acids appeared when butanol was added to the culture. The largest change in total plasmalogen content was observed one hour after butanol addition i.e. at the 7th hour of cultivation. When butanol is produced by bacterial cells, then the cells are not subjected to severe stress and responded to it by relatively slowly changing the content of fatty acids and plasmalogens, while after a pulse addition of external butanol (to a final non-lethal concentration of 0.5 % v/v) the cells reacted relatively quickly (within a time span of tens of minutes) by increasing the total plasmalogen content.
Folia Microbiologica | 2012
Michaela Linhova; Barbora Branska; Petra Patakova; Jakub Lipovský; Petr Fribert; Mojmír Rychtera; Karel Melzoch
We endeavored to develop a method for viability determination of solventogenic clostridia and to apply it for monitoring acetone–butanol–ethanol (ABE) fermentation. Six fluorescent probes (propidium iodide [PI], ethidium bromide, fluorescein diacetate, carboxyfluorescein diacetate [cFDA], rhodamine 123, bis-(1,3-dibutylbarbituric acid)trimethine oxonol [BOX]) were tested in order to distinguish two subpopulations of live and dead clostridial cells in suspension. Three of them were found to be appropriate (PI, BOX and cFDA) for this purpose. Developed fluorescent staining methods were applied to batch fermentation processes of Clostridium pasteurianum and C. beijerinckii carried out in a laboratory bioreactor under anaerobic conditions. Whereas PI was found to be applicable to both strains, BOX was convenient only for viability determination of C. pasteurianum. Although cFDA can distinguish two cell subpopulations in suspension, it was found to be unsuitable for viability determination under tested conditions, since it reflected more variable esterase activity during sporulation cell cycle than viability. Flow cytometry in combination with convenient fluorescent probe has been proved to be a valuable tool for viability determination. We assume this rapid and simple method can help to obtain more complex and precise information about ABE fermentation.
Archive | 2011
Petra Patakova; Daniel Maxa; Mojmír Rychtera; Michaela Linhova; Petr Fribert; Zlata Muzikova; Jakub Lipovsky; Leona Paulova; Milan Pospíšil; Gustav Šebor; Karel Melzoch
Nowadays, with increasing hunger for liquid fuels usable in transportation, alternatives to crude oil derived fuels are being searched very intensively. In addition to bioethanol and ethyl or methyl esters of rapeseed oil that are currently used as bio-components of transportation fuels in Europe, other options are investigated and one of them is biobutanol, which can be, if produced from waste biomass or non-food agricultural products, classified as the biofuel of the second generation. Although its biotechnological production is far more complicated than bioethanol production, its advantages over bioethanol from fuel preparation point of view i.e. higher energy content, lower miscibility with water, lower vapour pressure and lower corrosivity together with an ability of the producer, Clostridium bacteria, to ferment almost all available substrates might outweigh the balance in its favour. The main intention of this chapter is to summarize briefly industrial biobutanol production history, to introduce the problematic of butanol formation by clostridia including short description of various options of fermentation arrangement and most of all to provide with complex fermentation data using little known butanol producers Clostridium pasteurianum NRRL B-592 and Clostridium beijerinckii CCM 6182. A short overview follows concerning the use of biobutanol as a fuel for internal combustion engines with regard to properties of biobutanol and its mixtures with petroleum derived fuels as well as their emission characteristics, which are illustrated based on emission measurement results obtained for three types of passenger cars.
Journal of Biotechnology | 2015
Karel Sedlar; Jan Kolek; Helena Skutkova; Barbora Branska; Ivo Provaznik; Petra Patakova
The strain Clostridium pasteurianum NRRL B-598 is non-type, oxygen tolerant, spore-forming, mesophilic and heterofermentative strain with high hydrogen production and ability of acetone-butanol fermentation (ethanol production being negligible). Here, we present the annotated complete genome sequence of this bacterium, replacing the previous draft genome assembly. The genome consisting of a single circular 6,186,879 bp chromosome with no plasmid was determined using PacBio RSII and Roche 454 sequencing.
Journal of Biotechnology | 2015
Alessandro Gallazzi; Barbora Branska; Flavia Marinelli; Petra Patakova
For n-butanol production by Clostridium pasteurianum DSM 525, a modified reinforced Clostridium medium was used, where glucose was alternated with glycerol and two kinds of continuous fermentation were tested using suspended and surface immobilized cells on corn stover pieces. A steady state, with butanol productivity of 4.2g/Lh, was reached during the packed-bed continuous fermentation at a dilution rate of 0.44h(-1). The average n-butanol concentration, yield and the ratio of n-butanol/liquid by-products were 10.4g/L, 33 % and 2.5, respectively. Unexpectedly, during continuous fermentation with suspended cells, at a dilution rate of 0.01h(-1), steady-state was not achieved and regular oscillations occurred in all measured variables, i.e. concentrations of glycerol, products and the number of cells stained with the fluorescent dyes carboxy fluorescein diacetate and propidium iodide. A possible explanation for oscillatory/steady-state behavior of suspended/surface-attached cells, respectively, may be specific butanol toxicity (toxicity per cell), which was higher/lower in respective cases, and which might be caused by lower/higher cell numbers respectively in both systems.
Fems Microbiology Letters | 2016
Jan Kolek; Barbora Branska; Marek Drahokoupil; Petra Patakova; Karel Melzoch
Flow cytometry, in combination with fluorescent staining, was used to evaluate population heterogeneity in acetone-butanol-ethanol fermentation that was carried out with type strain Clostridium beijerinckii NCIMB 8052 and non-type C. pasteurianum NRRL B-598. A combination of propidium iodide (PI) and carboxyfluorescein diacetate (CFDA), PI plus Syto-9 and bis-oxonol (BOX) alone were employed to distinguish between active and damaged cells together with simultaneous detection of spores. These strategies provided valuable information on the physiological state of clostridia. CFDA and PI staining gave the best separation of four distinct subpopulations of enzymatically active cells, doubly stained cells, damaged cells and spores. Proportional representation of cells in particular sub-regions correlated with growth characteristics, fermentation parameters such as substrate consumption and product formation in both species under different cultivation conditions.
Anaerobe | 2014
Petra Patakova; Michaela Linhova; Pavla Vykydalova; Barbora Branska; Mojmir Rychtera; Karel Melzoch
Physiological changes in populations of Clostridium beijerinckii and Clostridium tetanomorphum were monitored by fluorescence staining and flow cytometry. To estimate the number of metabolically active cells in exponential growth, a combination of the dyes propidium iodide and carboxy fluorescein diacetate appeared to be a good choice for both species. During stationary phase, these stains did not reflect physiological changes sufficiently and therefore additional labeling with bis-(1,3-dibutylbarbituric acid) trimethineoxonol was applied. Results of fluorescence staining in solventogenic batch fermentations were compared with substrate-use data, the concentration of key metabolites and growth curves. We demonstrate that measurements by all methods were mutually compatible.