Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Petra Rueger is active.

Publication


Featured researches published by Petra Rueger.


Neuron | 2014

Increased Brain Penetration and Potency of a Therapeutic Antibody Using a Monovalent Molecular Shuttle

Jens Niewoehner; Bernd Bohrmann; Ludovic Collin; Eduard Urich; Hadassah Sade; Peter Maier; Petra Rueger; Jan Olaf Stracke; Wilma Lau; Alain C. Tissot; Hansruedi Loetscher; Anirvan Ghosh; Per-Ola Freskgård

Although biotherapeutics have vast potential for treating brain disorders, their use has been limited due to low exposure across the blood-brain barrier (BBB). We report that by manipulating the binding mode of an antibody fragment to the transferrin receptor (TfR), we have developed a Brain Shuttle module, which can be engineered into a standard therapeutic antibody for successful BBB transcytosis. Brain Shuttle version of an anti-Aβ antibody, which uses a monovalent binding mode to the TfR, increases β-Amyloid target engagement in a mouse model of Alzheimers disease by 55-fold compared to the parent antibody. We provide in vitro and in vivo evidence that the monovalent binding mode facilitates transcellular transport, whereas a bivalent binding mode leads to lysosome sorting. Enhanced target engagement of the Brain Shuttle module translates into a significant improvement in amyloid reduction. These findings have major implications for the development of biologics-based treatment of brain disorders.


mAbs | 2013

Analytical FcRn affinity chromatography for functional characterization of monoclonal antibodies

Tilman Schlothauer; Petra Rueger; Jan Olaf Stracke; Hubert Hertenberger; Felix Fingas; Lothar Kling; Thomas Emrich; Georg Drabner; Stefan Seeber; Johannes Auer; Stefan Koch; Apollon Papadimitriou

The neonatal Fc receptor (FcRn) is important for the metabolic fate of IgG antibodies in vivo. Analysis of the interaction between FcRn and IgG in vitro might provide insight into the structural and functional integrity of therapeutic IgG that may affect pharmacokinetics (PK) in vivo. We developed a standardized pH gradient FcRn affinity liquid chromatography method with conditions closely resembling the physiological mechanism of interaction between IgG and FcRn. This method allows the separation of molecular IgG isoforms, degradation products and engineered molecules based on their affinity to FcRn. Human FcRn was immobilized on the column and a linear pH gradient from pH 5.5 to 8.8 was applied. FcRn chromatography was used in comparison to surface plasmon resonance to characterize different monoclonal IgG preparations, e.g., oxidized or aggregated species. Wild-type and engineered IgGs were compared in vitro by FcRn chromatography and in vivo by PK studies in huFcRn transgenic mice. Analytical FcRn chromatography allows differentiation of IgG samples and variants by peak pattern and retention time profile. The method can distinguish: 1) IgGs with different Fabs, 2) oxidized from native IgG, 3) aggregates from monomer and 4) antibodies with mutations in the Fc part from wild-type IgGs. Changes in the FcRn chromatographic behavior of mutant IgGs relative to the wild-type IgG correlate to changes in the PK profile in the FcRn transgenic mice. These results demonstrate that FcRn affinity chromatography is a useful new method for the assessment of IgG integrity.


mAbs | 2014

A novel approach to investigate the effect of methionine oxidation on pharmacokinetic properties of therapeutic antibodies

Jan Olaf Stracke; Thomas Emrich; Petra Rueger; Tilman Schlothauer; Lothar Kling; Alexander Knaupp; Hubert Hertenberger; Andreas Wolfert; Christian Spick; Wilma Lau; Georg Drabner; Ulrike Reiff; Hans Koll; Apollon Papadimitriou

Preserving the chemical and structural integrity of therapeutic antibodies during manufacturing and storage is a major challenge during pharmaceutical development. Oxidation of Fc methionines Met252 and Met428 is frequently observed, which leads to reduced affinity to FcRn and faster plasma clearance if present at high levels. Because oxidation occurs in both positions simultaneously, their individual contribution to the concomitant changes in pharmacokinetic properties has not been clearly established. A novel pH-gradient FcRn affinity chromatography method was applied to isolate three antibody oxidation variants from an oxidized IgG1 preparation based on their FcRn binding properties. Physico-chemical characterization revealed that the three oxidation variants differed predominantly in the number of oxMet252 per IgG (0, 1, or 2), but not significantly in the content of oxMet428. Corresponding to the increase in oxMet252 content, stepwise reduction of FcRn affinity in vitro, as well as faster clearance and shorter terminal half-life, in huFcRn-transgenic mice were observed. A single Met252 oxidation per antibody had no significant effect on pharmacokinetics (PK) compared with unmodified IgG. Importantly, only molecules with both heavy chains oxidized at Met252 exhibited significantly faster clearance. In contrast, Met428 oxidation had no apparent negative effect on PK and even led to somewhat improved FcRn binding and slower clearance. This minor effect, however, seemed to be abrogated by the dominant effect of Met252 oxidation. The novel approach of functional chromatographic separation of IgG oxidation variants followed by physico-chemical and biological characterization has yielded the first experimentally-backed explanation for the unaltered PK properties of antibody preparations containing relatively high Met252 and Met428 oxidation levels.


PLOS ONE | 2015

Multi-Angle Effector Function Analysis of Human Monoclonal IgG Glycovariants

Tetyana Dashivets; Marco Thomann; Petra Rueger; Alexander Knaupp; Johannes Buchner; Tilman Schlothauer

Therapeutic performance of recombinant antibodies relies on two independent mechanisms: antigen recognition and Fc-mediated antibody effector functions. Interaction of Fc-fragment with different FcR triggers antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity and determines longevity of the antibody in serum. In context of therapeutic antibodies FcγRs play the most important role. It has been demonstrated that the Fc-attached sugar moiety is essential for IgG effector functionality, dictates its affinity to individual FcγRs and determines binding to different receptor classes: activating or inhibitory. In this study, we systematically analyze effector functions of monoclonal IgG1 and its eight enzymatically engineered glycosylation variants. The analysis of interaction of glycovariants with FcRs was performed for single, as well as for antigen-bound antibodies and IgGs in a form of immune complex. In addition to functional properties we addressed impact of glycosylation on the structural properties of the tested glycovariants. We demonstrate a clear impact of glycosylation pattern on antibody stability and interaction with different FcγRs. Consistent with previous reports, deglycosylated antibodies failed to bind all Fcγ-receptors, with the exception of high affinity FcγRI. The FcγRII and FcγRIIIa binding activity of IgG1 was observed to depend on the galactosylation level, and hypergalactosylated antibodies demonstrated increased receptor interaction. Sialylation did not decrease the FcγR binding of the tested IgGs; in contrast, sialylation of antibodies improved binding to FcγRIIa and IIb. We demonstrate that glycosylation influences to some extent IgG1 interaction with FcRn. However, independent of glycosylation pattern the interaction of IgG1 with a soluble monomeric target surprisingly resulted in an impaired receptor binding. Here, we demonstrate, that immune complexes (IC), induced by multimeric ligand, compensated for the decreased affinity of target bound antibody towards FcRs, showing the importance of the IC-formation for the FcR- mediated effector functions.


Cell Reports | 2018

Brain Shuttle Antibody for Alzheimer’s Disease with Attenuated Peripheral Effector Function due to an Inverted Binding Mode

Felix Weber; Bernd Bohrmann; Jens Niewoehner; Jens Fischer; Petra Rueger; Georg Tiefenthaler; Joerg Moelleken; Alexander Bujotzek; Kevin Brady; Thomas Singer; Martin Ebeling; Antonio Iglesias; Per-Ola Freskgård

Receptors show promise for the transport of monoclonal antibodies (mAbs) across the blood-brain barrier. However, safety liabilities associated with peripheral receptor binding and Fc effector function have been reported. We present the Brain Shuttle-mAb (BS-mAb) technology, and we investigate the role of Fc effector function inxa0vitro and in an Fcγ receptor (FcγR)-humanized mouse model. Strong first infusion reactions (FIRs) were observed for a conventional mAb against transferrin receptor (TfR) with a wild-type immunoglobulin G1 (IgG1) Fc. Fc effector-dead constructs completely eliminated all FIRs. Remarkably, no FIR was observed for the BS-mAb construct with a native IgG1 Fc function. Using various BS-mAb constructs, we show that TfR binding through the C-terminal BS module attenuates Fc-FcγR interactions, primarily because of steric hindrance. Nevertheless, BS-mAbs maintain effector function activity when binding their brain target. Thus, mAbs with full effector function can be transported in a stealth mode in the periphery while fully active when engaged with their brain target.


Archive | 2005

Amide Derivatives of 7-Amino-3-Phenyl-Dihydropyrimido[4,5-D]Pyrimidinones, Their Manufacture and Use as Pharmaceutical Agents

Richard A. Engh; Hubert Hertenberger; Konrad Honold; Birgit Masjost; Petra Rueger; Wolfgang Schaefer; Stefan Scheiblich; Manfred Schwaiger


Archive | 2005

Trycyclic heterocycles, their manufacture and use as pharmaceutical agents

Guy Georges; Bernhard Goller; Klaus-Peter Kuenkele; Anja Limberg; Ulrike Reiff; Petra Rueger; Matthias Rueth; Christine Schuell


Archive | 2001

Antibodies against SEMP1 (p23)

Thorsten Hoevel; Stefan Koch; Manfred Kubbies; Olaf Mundigl; Petra Rueger


Archive | 2005

NOVEL PHTHALAZINONE DERIVATIVES, AS AURORA-A KINASE INHIBITORS

Edward Boyd; Frederick Brookfield; Guy Georges; Bernhard Goller; Sabine Huensch; Petra Rueger; Matthias Rueth; Stefan Scheiblich; Christine Schuell; Der Saal Wolfgang Von; Justin Warne; Stefan Weigand


Archive | 2014

MONOVALENT BLOOD BRAIN BARRIER SHUTTLE MODULES

Petra Rueger; Georg Tiefenthaler; Ekkehard Moessner; Jens Niewoehner; Adrian Hugenmatter; Cuiying Shao; Francesca Ros; Gang Xu

Collaboration


Dive into the Petra Rueger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge