Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Petra Schütz is active.

Publication


Featured researches published by Petra Schütz.


Mutation Research | 2002

Mutagen sensitivity of peripheral blood from women carrying a BRCA1 or BRCA2 mutation.

Kristina Trenz; Andreas Rothfuss; Petra Schütz; Günter Speit

We are studying the induction and repair of DNA damage in lymphocytes of women from families with familial breast cancer and a heterozygous mutation in the breast cancer susceptibility genes BRCA1 or BRCA2. Besides various other functions, BRCA proteins seem to be involved in DNA repair processes like transcription-coupled and double-strand break (dsb) repair. Our previous results indicated a close relationship between the presence of a BRCA1 mutation and sensitivity for the induction of micronuclei (MN) by gamma irradiation and hydrogen peroxide (H2O2). In contrast to the results with the micronucleus assay, we found no significant individual difference between women with and without a BRCA1 mutation with respect to the induction and repair of DNA damage in the alkaline comet assay. We now investigated further cases heterozygous for a BRCA1 mutation and cases heterozygous for a BRCA2 mutation and show that enhanced micronucleus formation after gamma irradiation and H2O2-treatment is also a feature of lymphocytes carrying a BRCA2 mutation. Investigations with the comet assay did not reveal clear differences with regard to the induction of DNA damage on the individual level. There were also no significant differences between blood samples carrying a BRCA1 or BRCA2 mutation and blood samples from normal controls when the repair capacities (i.e. the kinetics of the removal of radiation-induced DNA effects in the comet assay) were compared. Our results indicate that mutagen sensitivity of lymphocytes heterozygous for a BRCA2 mutation is similar to that of cells with a BRCA1 mutation and BRCA1 and BRCA2 cannot be differentiated at present with the micronucleus test (MNT) or the comet assay.


Environmental and Molecular Mutagenesis | 2008

Genotoxic effects of formaldehyde in the human lung cell line A549 and in primary human nasal epithelial cells

Giinter Speit; Oliver Schmid; Simone Neuss; Petra Schütz

The alkaline comet assay was used to further characterize the induction of DNA‐protein crosslinks (DPX) by formaldehyde (FA) and their removal in the human lung cell line A549 and in primary human nasal epithelial cells (HNEC). DPX were indirectly measured as the reduction of γ ray – induced DNA migration. FA induced DPX in A549 cells in a concentration‐related manner in the range of 100–300 μM. This result is in agreement with previous studies using different mammalian cell lines. The main new findings of the present study are: (i) Determination of cytotoxicity in relation to genotoxicity strongly depend on the method used. Cytotoxicity measured as the reduction in cell counts 48 hr after addition of FA to the cultures occurred parallel to the induction of DPX while colony forming ability was already reduced at 10 times lower FA concentrations; (ii) DPX induced by a 1‐hr FA treatment were completely removed within 8 hr cultivation in fresh medium while in the presence of FA in the medium DPX levels remained unchanged for 24 hr; (iii) Induction and removal of DPX did not fundamentally differ between exponentially growing and confluent A549 cultures; (iv) Slowly proliferating HNEC showed the same sensitivity towards FA‐induced DPX as A549 cells (i.e. the same FA concentrations induced DPX under the same experimental conditions) and removed DPX with a similar efficiency. In summary, these results contribute to a better understanding of the genotoxic activity of FA in vitro and indicate that the tested cultured primary and permanent human cells do not differ fundamentally with regard to the processing of FA‐induced primary genotoxic effects. Environ. Mol. Mutagen., 2008.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 1999

Comparative evaluation of the genotoxic properties of potassium bromate and potassium superoxide in V79 Chinese hamster cells

Günter Speit; Sabine Haupter; Petra Schütz; Patricia Kreis

The genotoxic potential of two oxidizing compounds, potassium bromate and potassium superoxide, was comparatively tested in various genotoxicity tests with V79 Chinese hamster cells. Both substances clearly induced cytotoxicity, chromosome aberrations and increased DNA migration in the alkaline comet assay. Using a modified comet assay protocol with FPG protein, a DNA repair enzyme which specifically nicks DNA at sites of 8-oxoguanines and formamidopyrimidines, we detected oxidative DNA base damage only after potassium bromate treatment. HPLC analysis also revealed significantly increased levels of 8-oxodeoxyguanosine after potassium bromate treatment but not after potassium superoxide treatment. Furthermore, potassium bromate clearly induced gene mutations at the HPRT locus while potassium superoxide only had a small effect on HPRT mutant frequencies. Molecular analysis of potassium bromate-induced mutations indicated a high portion of deletion mutations. Three out of four point mutations were G to T transversions which typically arise after replication of 8-oxoguanine. Our results suggest that the two oxidizing compounds induce specific patterns of genotoxic effects that reflect the types of DNA alterations induced by different reactive oxygen species (ROS).


Toxicology Letters | 1999

The influence of temperature during alkaline treatment and electrophoresis on results obtained with the comet assay.

Günter Speit; Kristina Trenz; Petra Schütz; Andreas Rothfuß; Oliver Merk

The alkaline comet assay (single-cell gel electrophoresis) is becoming established as a genotoxicity test with many fold applications in vitro and in vivo. While the underlying principles are identical, various modifications of the method are in use which clearly affect the sensitivity and resolving power of the assay. One variable of potential importance that has been disregarded until now is temperature during alkaline treatment and electrophoresis. We therefore performed comet assay experiments with human blood and V79 Chinese hamster cells using two different temperatures (4 and 20 degrees C, i.e. room temperature) during alkaline treatment and electrophoresis. DNA damage was induced by the two standard mutagens gamma irradiation and methyl methanesulfonate (MMS). The results clearly indicate significant differences in the detection of background and mutagen-induced DNA damage at these two temperatures. Under otherwise identical test conditions (including the duration of alkaline treatment and electrophoresis), increased temperature during alkaline treatment and electrophoresis strongly enhances DNA migration. Our findings suggest that the comet assay should be performed under strictly controlled and reproducible temperature conditions. In any case the temperature during alkaline treatment and electrophoresis should be stated in a publication to allow for a critical evaluation of results obtained with the comet assay.


Mutagenesis | 2012

Insensitivity of the in vitro cytokinesis-block micronucleus assay with human lymphocytes for the detection of DNA damage present at the start of the cell culture

Günter Speit; Regina Linsenmeyer; Petra Schütz; Stefanie Kuehner

The cytokinesis-block micronucleus assay (CBMN assay) with cultured human lymphocytes is a well-established assay in genotoxicity testing and human biomonitoring. For both approaches, human lymphocytes are stimulated by phytohaemagglutinin (PHA) and cultured for about 72 h; 44 h after PHA stimulation, cytochalasin B (CytB) is added and micronuclei (MN) are scored in binucleated cells. The main difference between these two applications is the way lymphocytes are exposed to mutagens. In order to maximise the probability of detecting a mutagen, the OECD guideline 487 recommends starting the exposure to the test substance at 44-48 h after PHA stimulation. In human biomonitoring, blood samples are taken from subjects exposed to environmental mutagens in vivo and lymphocytes with induced DNA damage at the start of the cell culture are investigated with regard to potentially increased MN frequencies in binuclear lymphocytes. We compared the sensitivity of these two protocols by either treating lymphocyte cultures for 2h with known DNA-damaging mutagens at the start of the culture or 42 h after PHA stimulation. The mutagens used were methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS), N-nitroso-N-ethylurea (ethyl nitrosourea; ENU), styrene oxide (SO), (±)-anti-B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE) and mitomycin C (MMC). All substances induced MN under the conditions of the standard in vitro CBMN assay but only MMC clearly induced MN in lymphocytes exposed at the start of the culture. All mutagens (except MMC, a known crosslinker) were tested by the comet assay with blood cultures exposed at the start of the culture and clearly induced DNA migration. The nuclear division index (NDI) indicated that damaged lymphocytes proliferated well in these experiments. The lack of increased MN frequencies despite increased damage levels and good proliferation suggests that the CBMN assay is rather insensitive for the detection of mutagens/clastogens when damage is induced at the start of the blood cultures. Potential consequences for the interpretation of human biomonitoring studies are discussed in this article.


Mutagenesis | 2011

Does formaldehyde induce aneuploidy

Günter Speit; Stefanie Kühner; Regina Linsenmeyer; Petra Schütz

Formaldehyde (FA) was tested for a potential aneugenic activity in mammalian cells. We employed tests to discriminate between aneugenic and clastogenic effects in accordance with international guidelines for genotoxicity testing. The cytokinesis-block micronucleus test (CBMNT) in combination with fluorescence in situ hybridisation (FISH) with a pan-centromeric probe was performed with cultured human lymphocytes and the human A549 lung cell line. FA induced micronuclei (MN) in binuclear cells of both cell types under standard in vitro test conditions following the OECD guideline 487. FISH analysis revealed that the vast majority of induced MN were centromere negative, thus indicating a clastogenic effect. A similar result was obtained for MN induced by γ-irradiation, whereas the typical aneugens colcemid (COL) and vincristine (VCR) predominantly induced centromere-positive MN. Furthermore, COL and VCR clearly enhanced the MN frequency in mononuclear lymphocytes in the CBMNT, whereas such an effect was not observed for γ-irradiation and FA. In experiments with the Chinese hamster V79 cell line, the aneugens COL and VCR clearly increased the frequency of tetraploid second division metaphases, whereas FA did not cause such an effect. Altogether, our results confirm the clastogenicity of FA in cultured mammalian cells but exclude a significant aneugenic activity.


Mutation Research | 2013

Hyperthermia-induced genotoxic effects in human A549 cells

Günter Speit; Petra Schütz

Genotoxic effects of hyperthermia in vitro and in vivo have repeatedly been reported. Short-duration heat shocks and elevated temperature over longer time periods have been shown to induce DNA damage, chromosomal damage and to inhibit DNA repair. Using the comet assay and the micronucleus test, we now investigated temperature- and time-related effects on DNA damage and chromosomal effects of hyperthermia on the A549 human lung cell line. We also related the genotoxic effects to cytotoxic effects and the induction of apoptosis. Our results indicate that exposure to hyperthermia (42-48°C for 30-120min) induced genotoxic effects in a temperature- and time-related manner. Interestingly, hyperthermia-induced DNA damage measured by the comet assay was not rapidly removed by post-incubation at 37°C but even increased after exposure to 48°C for 60min. Cytotoxic effects occurred in parallel to the genotoxic effects but apoptosis was not significantly induced under these experimental conditions.


Mutagenesis | 2009

Micronuclei in peripheral blood from patients after cytostatic therapy mainly arise ex vivo from persistent damage

Nicole Sibel Arsoy; Simone Neuss; Swen Wessendorf; Martin Bommer; Andreas Viardot; Petra Schütz; Giinter Speit

The micronucleus test (MNT) is a well-established assay in genotoxicity testing and human biomonitoring. The cytokinesis-block micronucleus test (CBMNT) is the preferred method for measuring MN in cultured human lymphocytes from human subjects exposed to genotoxins. It is, however, unclear to what extent mutagen exposure either leads to the formation of MN already in vivo or to the formation of MN ex vivo during cell culture as a consequence of persisting DNA damage. To address this question, we investigated peripheral blood of 22 patients who had received cytostatic therapies including drugs with clastogenic and aneugenic effects. We also performed the MNT with blood samples from 13 healthy controls without relevant mutagen exposure. The incidence of MN was studied 24, 48 and 72 h after the start of the culture in mononuclear lymphocytes in cultures without cytochalasin B and also at 72 h in binucleated lymphocytes in the standard CBMNT. The mean frequency of binuclear cells with MN in the CBMNT was clearly increased in blood samples from patients (29.3 versus 10.2 per 1000 in controls). In contrast, mononuclear lymphocytes analysed 24 or 48 h after start of the cultures only revealed a marginal increase in MN frequencies in comparison to controls. These results suggest that mutagen exposure in vivo mainly leads to the formation of MN during ex vivo proliferation of lymphocytes as a consequence of persistent damage. Characterization of MN in binuclear lymphocytes from patients by fluorescence in situ hybridization (FISH) with a pan-centromeric probe indicated that MN arose by clastogenic and aneugenic mechanisms. A high portion of MN was relatively large and exhibited several centromere signals. If the results of this study with patients exposed to cytostatic drugs also apply to other kinds of mutagen exposure, increased MN frequencies in the CBMNT can only be expected for exposures leading to persistent damage in peripheral lymphocytes and MN formation during ex vivo lymphocyte culture.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2008

The effect of inhibited replication on DNA migration in the comet assay in relation to cytotoxicity and clastogenicity.

Günter Speit; Petra Schütz

The DNA-replication inhibitors aphidicolin (APC) and hydroxyurea (HU) were tested for their ability to induce effects on DNA in the in vitro alkaline comet assay with V79 cells. APC concentrations up to 15 microM and HU concentrations up to 500 microM did not significantly increase the extent of DNA migration after treatment during 4h. Treatment for 18 h, however, led to inconsistently significant increase in DNA migration. These increases in DNA migration were accompanied by severe cell-cycle disturbances, cytotoxic effects (reduced population doubling and reduced mitotic index) and increased frequencies of cells with chromosome aberrations. The results indicate that substances with such secondary effects on DNA (in contrast to agents that directly damage DNA) only induce effects in the comet assay after prolonged exposure, together with cytotoxic effects. We conclude that slight inhibition of DNA replication and cell-cycle delay per se do not cause significant effects in the in vitro comet assay under standard test conditions. Furthermore, the in vitro comet assay seems to be less sensitive towards this type of secondary DNA effects than the in vitro chromosome aberration test.


Journal of Clinical Investigation | 2017

Dysfunction of the MDM2/p53 axis is linked to premature aging

Davor Lessel; Danyi Wu; Carlos Trujillo; Thomas Ramezani; Ivana Lessel; Mohammad K. Alwasiyah; Bidisha Saha; Fuki M. Hisama; Katrin Rading; Ingrid Goebel; Petra Schütz; Günter Speit; Josef Högel; Holger Thiele; Gudrun Nürnberg; Peter Nürnberg; Matthias Hammerschmidt; Yan Zhu; David R. Tong; Chen Katz; George M. Martin; Junko Oshima; Carol Prives; Christian Kubisch

The tumor suppressor p53, a master regulator of the cellular response to stress, is tightly regulated by the E3 ubiquitin ligase MDM2 via an autoregulatory feedback loop. In addition to its well-established role in tumorigenesis, p53 has also been associated with aging in mice. Several mouse models with aberrantly increased p53 activity display signs of premature aging. However, the relationship between dysfunction of the MDM2/p53 axis and human aging remains elusive. Here, we have identified an antiterminating homozygous germline mutation in MDM2 in a patient affected by a segmental progeroid syndrome. We show that this mutation abrogates MDM2 activity, thereby resulting in enhanced levels and stability of p53. Analysis of the patients primary cells, genome-edited cells, and in vitro and in vivo analyses confirmed the MDM2 mutations aberrant regulation of p53 activity. Functional data from a zebrafish model further demonstrated that mutant Mdm2 was unable to rescue a p53-induced apoptotic phenotype. Altogether, our findings indicate that mutant MDM2 is a likely driver of the observed segmental form of progeria.

Collaboration


Dive into the Petra Schütz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ann Liza Piberger

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge