Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Petrina H. Johnson is active.

Publication


Featured researches published by Petrina H. Johnson.


Nature | 2011

Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission

Ary A. Hoffmann; Brian L. Montgomery; Jean Popovici; Iñaki Iturbe-Ormaetxe; Petrina H. Johnson; F. Muzzi; M. Greenfield; M. Durkan; Yi San Leong; Y. Dong; H. Cook; Jason K. Axford; Ashley G. Callahan; N. Kenny; C. Omodei; Elizabeth A. McGraw; Peter A. Ryan; Scott A. Ritchie; Michael Turelli; Scott L. O’Neill

Genetic manipulations of insect populations for pest control have been advocated for some time, but there are few cases where manipulated individuals have been released in the field and no cases where they have successfully invaded target populations. Population transformation using the intracellular bacterium Wolbachia is particularly attractive because this maternally-inherited agent provides a powerful mechanism to invade natural populations through cytoplasmic incompatibility. When Wolbachia are introduced into mosquitoes, they interfere with pathogen transmission and influence key life history traits such as lifespan. Here we describe how the wMel Wolbachia infection, introduced into the dengue vector Aedes aegypti from Drosophila melanogaster, successfully invaded two natural A. aegypti populations in Australia, reaching near-fixation in a few months following releases of wMel-infected A. aegypti adults. Models with plausible parameter values indicate that Wolbachia-infected mosquitoes suffered relatively small fitness costs, leading to an unstable equilibrium frequency <30% that must be exceeded for invasion. These findings demonstrate that Wolbachia-based strategies can be deployed as a practical approach to dengue suppression with potential for area-wide implementation.


Nature | 2011

The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations

Thomas Walker; Petrina H. Johnson; Luciano A. Moreira; Iñaki Iturbe-Ormaetxe; Francesca D. Frentiu; Conor J. McMeniman; Yi San Leong; Y. Dong; Jason K. Axford; Peter Kriesner; A.L. Lloyd; Scott A. Ritchie; Scott L. O'Neill; Ary A. Hoffmann

Dengue fever is the most important mosquito-borne viral disease of humans with more than 50 million cases estimated annually in more than 100 countries. Disturbingly, the geographic range of dengue is currently expanding and the severity of outbreaks is increasing. Control options for dengue are very limited and currently focus on reducing population abundance of the major mosquito vector, Aedes aegypti. These strategies are failing to reduce dengue incidence in tropical communities and there is an urgent need for effective alternatives. It has been proposed that endosymbiotic bacterial Wolbachia infections of insects might be used in novel strategies for dengue control. For example, the wMelPop-CLA Wolbachia strain reduces the lifespan of adult A. aegypti mosquitoes in stably transinfected lines. This life-shortening phenotype was predicted to reduce the potential for dengue transmission. The recent discovery that several Wolbachia infections, including wMelPop-CLA, can also directly influence the susceptibility of insects to infection with a range of insect and human pathogens has markedly changed the potential for Wolbachia infections to control human diseases. Here we describe the successful transinfection of A. aegypti with the avirulent wMel strain of Wolbachia, which induces the reproductive phenotype cytoplasmic incompatibility with minimal apparent fitness costs and high maternal transmission, providing optimal phenotypic effects for invasion. Under semi-field conditions, the wMel strain increased from an initial starting frequency of 0.65 to near fixation within a few generations, invading A. aegypti populations at an accelerated rate relative to trials with the wMelPop-CLA strain. We also show that wMel and wMelPop-CLA strains block transmission of dengue serotype 2 (DENV-2) in A. aegypti, forming the basis of a practical approach to dengue suppression.


Proceedings of the Royal Society of London B: Biological Sciences | 2011

Worldwide patterns of genetic differentiation imply multiple ‘domestications’ of Aedes aegypti, a major vector of human diseases

Julia E. Brown; Carolyn S. McBride; Petrina H. Johnson; Scott A. Ritchie; Christophe Paupy; Hervé C. Bossin; Joel Lutomiah; Ildefonso Fernández-Salas; Alongkot Ponlawat; Anthony J. Cornel; William C. Black; Norma Gorrochotegui-Escalante; Ludmel Urdaneta-Marquez; Massamba Sylla; Michel A. Slotman; Kristy O. Murray; Christopher Walker; Jeffrey R. Powell

Understanding the processes by which species colonize and adapt to human habitats is particularly important in the case of disease-vectoring arthropods. The mosquito species Aedes aegypti, a major vector of dengue and yellow fever viruses, probably originated as a wild, zoophilic species in sub-Saharan Africa, where some populations still breed in tree holes in forested habitats. Many populations of the species, however, have evolved to thrive in human habitats and to bite humans. This includes some populations within Africa as well as almost all those outside Africa. It is not clear whether all domestic populations are genetically related and represent a single ‘domestication’ event, or whether association with human habitats has developed multiple times independently within the species. To test the hypotheses above, we screened 24 worldwide population samples of Ae. aegypti at 12 polymorphic microsatellite loci. We identified two distinct genetic clusters: one included all domestic populations outside of Africa and the other included both domestic and forest populations within Africa. This suggests that human association in Africa occurred independently from that in domestic populations across the rest of the world. Additionally, measures of genetic diversity support Ae. aegypti in Africa as the ancestral form of the species. Individuals from domestic populations outside Africa can reliably be assigned back to their population of origin, which will help determine the origins of new introductions of Ae. aegypti.


Genetics | 2011

Dynamics of the “Popcorn” Wolbachia Infection in Outbred Aedes aegypti Informs Prospects for Mosquito Vector Control

Heng Lin Yeap; Peter T. Mee; Tom Walker; Andrew R. Weeks; Scott L. O'Neill; Petrina H. Johnson; Scott A. Ritchie; Kelly M. Richardson; Clare Doig; Nancy M. Endersby; Ary A. Hoffmann

Forty percent of the worlds population is at risk of contracting dengue virus, which produces dengue fever with a potentially fatal hemorrhagic form. The wMelPop Wolbachia infection of Drosophila melanogaster reduces life span and interferes with viral transmission when introduced into the mosquito Aedes aegypti, the primary vector of dengue virus. Wolbachia has been proposed as an agent for preventing transmission of dengue virus. Population invasion by Wolbachia depends on levels of cytoplasmic incompatibility, fitness effects, and maternal transmission. Here we characterized these traits in an outbred genetic background of a potential target population of Ae. aegypti using two crossing schemes. Cytoplasmic incompatibility was strong in this background, and the maternal transmission rate of Wolbachia was high. The infection substantially reduced longevity of infected adult females, regardless of whether adults came from larvae cultured under high or low levels of nutrition or density. The infection reduced the viability of diapausing and nondiapausing eggs. Viability was particularly low when eggs were laid by older females and when diapausing eggs had been stored for a few weeks. The infection affected mosquito larval development time and adult body size under different larval nutrition levels and densities. The results were used to assess the potential for wMelPop-CLA to invade natural populations of Ae. aegypti and to develop recommendations for the maintenance of fitness in infected mosquitoes that need to compete against field insects.


Parasites & Vectors | 2015

Field evaluation of the establishment potential of wmelpop Wolbachia in Australia and Vietnam for dengue control

Tran Hien Nguyen; H. Le Nguyen; Thu Nguyen; Sinh Nam Vu; Nhu Duong Tran; T. N. Le; Quang Mai Vien; T. C. Bui; Huu Tho Le; Simon C. Kutcher; Tim Hurst; Thi Hong Duong; Jason A. L. Jeffery; Jonathan M. Darbro; Brian H. Kay; Iñaki Iturbe-Ormaetxe; Jean Popovici; Brian L. Montgomery; Andrew P. Turley; Flora Zigterman; Helen Cook; Peter E. Cook; Petrina H. Johnson; Peter A. Ryan; Christopher J. Paton; Scott A. Ritchie; Cameron P. Simmons; Scott L. O’Neill; Ary A. Hoffmann

BackgroundIntroduced Wolbachia bacteria can influence the susceptibility of Aedes aegypti mosquitoes to arboviral infections as well as having detrimental effects on host fitness. Previous field trials demonstrated that the wMel strain of Wolbachia effectively and durably invades Ae. aegypti populations. Here we report on trials of a second strain, wMelPop-PGYP Wolbachia, in field sites in northern Australia (Machans Beach and Babinda) and central Vietnam (Tri Nguyen, Hon Mieu Island), each with contrasting natural Ae. aegypti densities.MethodsMosquitoes were released at the adult or pupal stages for different lengths of time at the sites depending on changes in Wolbachia frequency as assessed through PCR assays of material collected through Biogents-Sentinel (BG-S) traps and ovitraps. Adult numbers were also monitored through BG-S traps. Changes in Wolbachia frequency were compared across hamlets or house blocks.ResultsReleases of adult wMelPop-Ae. aegypti resulted in the transient invasion of wMelPop in all three field sites. Invasion at the Australian sites was heterogeneous, reflecting a slower rate of invasion in locations where background mosquito numbers were high. In contrast, invasion across Tri Nguyen was relatively uniform. After cessation of releases, the frequency of wMelPop declined in all sites, most rapidly in Babinda and Tri Nguyen. Within Machans Beach the rate of decrease varied among areas, and wMelPop was detected for several months in an area with a relatively low mosquito density.ConclusionsThese findings highlight challenges associated with releasing Wolbachia-Ae. aegypti combinations with low fitness, albeit strong virus interference properties, as a means of sustainable control of dengue virus transmission.


Medical and Veterinary Entomology | 2009

A lethal ovitrap-based mass trapping scheme for dengue control in Australia: II. Impact on populations of the mosquito Aedes aegypti

Luke P. Rapley; Petrina H. Johnson; Craig R. Williams; R. M. Silcock; M. Larkman; Sharron A. Long; Richard C. Russell; Scott A. Ritchie

In Cairns, Australia, the impacts on Aedes aegypti L. (Diptera: Culicidae) populations of two types of ‘lure & kill’ (L&K) lethal ovitraps (LOs), the standard lethal ovitrap (SLO) and the biodegradable lethal ovitrap (BLO) were measured during three mass‐trapping interventions. To assess the efficacy of the SLO, two interventions (one dry season and one wet season) were conducted in three discrete areas, each lasting 4 weeks, with the following treatments: (i) SLOs (>200 traps, ∼4/premise), BG‐sentinel traps (BGSs; ∼15, 1/premise) and larval control (container reduction and methoprene treatment) and (ii) larval control alone, and (iii) untreated control. Female Ae. aegypti populations were monitored for 4 weeks pre‐ and post‐treatment in all three areas using BGSs and sticky ovitraps (SOs) or non‐lethal regular ovitraps (ROs). In the dry season, 206 SLOs and 15 BGSs set at 54 and 15 houses, respectively, caught and killed an estimated 419 and 73 female Ae. aegypti, respectively. No significant decrease in collection size of female Ae. aegypti could be attributed to the treatments. In the wet season, 243 SLOs and 15 BGSs killed ∼993 and 119 female Ae. aegypti, respectively. The mean number of female Ae. aegypti collected after 4 weeks with SOs and BGSs was significantly less than the control (LSD post‐hoc test). The third mass‐trapping intervention was conducted using the BLO during the wet season in Cairns. For this trial, three treatment areas were each provided with BLOs (>500, ∼4/premise) plus larval control, and an untreated control area was designated. Adult female Ae. aegypti were collected for 4 weeks pre‐ and post‐treatment using 15 BGSs and 20 SOs. During this period, 53.2% of BLOs contained a total of 6654 Ae. aegypti eggs. Over the intervention period, collections of Ae. aegypti in the treatment areas were significantly less than in the control area for BGSs but not SOs. An influx of relatively large numbers of young females may have confounded the measurement of changes in populations of older females in these studies. This is an important issue, with implications for assessing delayed action control measures, such as LOs and parasites/pathogens that aim to change mosquito age structure. Finally, the high public acceptability of SLOs and BLOs, coupled with significant impacts on female Ae. aegypti populations in two of the three interventions reported here, suggest that mass trapping with SLOs and BLOs can be an effective component of a dengue control strategy.


American Journal of Tropical Medicine and Hygiene | 2012

Effects of Beauveria bassiana on Survival, Blood-Feeding Success, and Fecundity of Aedes aegypti in Laboratory and Semi-Field Conditions

Jonathan M. Darbro; Petrina H. Johnson; Matthew B. Thomas; Scott A. Ritchie; Brian H. Kay; Peter A. Ryan

The fungus Beauveria bassiana reduces Aedes aegypti longevity in laboratory conditions, but effects on survival, blood-feeding behavior, and fecundity in realistic environmental conditions have not been tested. Adult, female Ae. aegypti infected with B. bassiana (FI-277) were monitored for blood-feeding success and fecundity in the laboratory. Fungal infection reduced mosquito-human contact by 30%. Fecundity was reduced by (mean ± SD) 29.3 ± 8.6 eggs per female per lifetime in the laboratory; egg batch size and viability were unaffected. Mosquito survival, blood-feeding behavior, and fecundity were also tested in 5 meter × 7 meter × 4 meter semi-field cages in northern Queensland, Australia. Fungal infection reduced mosquito survival in semi-field conditions by 59-95% in large cages compared with 61-69% in small cages. One semi-field cage trial demonstrated 80% reduction in blood-feeding; a second trial showed no significant effect. Infection did not affect fecundity in large cages. Beauveria bassiana can kill and may reduce biting of Ae. aegypti in semi-field conditions and in the laboratory. These results further support the use of B. bassiana as a potential biocontrol agent against Ae. aegypti.


PLOS Neglected Tropical Diseases | 2011

A secure semi-field system for the study of Aedes aegypti.

Scott A. Ritchie; Petrina H. Johnson; Anthony J. Freeman; Robin G. Odell; Neal Graham; Paul A. DeJong; Graeme W. Standfield; Richard W. Sale; Scott L. O'Neill

Background New contained semi-field cages are being developed and used to test novel vector control strategies of dengue and malaria vectors. We herein describe a new Quarantine Insectary Level-2 (QIC-2) laboratory and field cages (James Cook University Mosquito Research Facility Semi-Field System; MRF SFS) that are being used to measure the impact of the endosymbiont Wolbachia pipientis on populations of Aedes aegypti in Cairns Australia. Methodology/Principal Findings The MRF consists of a single QIC-2 laboratory/insectary that connects through a central corridor to two identical QIC-2 semi-field cages. The semi-field cages are constructed of two layers of 0.25 mm stainless steel wire mesh to prevent escape of mosquitoes and ingress of other insects. The cages are covered by an aluminum security mesh to prevent penetration of the cages by branches and other missiles in the advent of a tropical cyclone. Parts of the cage are protected from UV light and rainfall by 90% shade cloth and a vinyl cover. A wooden structure simulating the understory of a Queenslander-style house is also situated at one end of each cage. The remainder of the internal aspect of the cage is covered with mulch and potted plants to emulate a typical yard. An air conditioning system comprised of two external ACs that feed cooled, moistened air into the cage units. The air is released from the central ceiling beam from a long cloth tube that disperses the airflow and also prevents mosquitoes from escaping the cage via the AC system. Sensors located inside and outside the cage monitor ambient temperature and relative humidity, with AC controlled to match ambient conditions. Data loggers set in the cages and outside found a <2°C temperature difference. Additional security features include air curtains over exit doors, sticky traps to monitor for escaping mosquitoes between layers of the mesh, a lockable vestibule leading from the connecting corridor to the cage and from inside to outside of the insectary, and screened (0.25 mm mesh) drains within the insectary and the cage. A set of standard operating procedures (SOP) has been developed to ensure that security is maintained and for enhanced surveillance for escaping mosquitoes on the JCU campus where the MRF is located. A cohort of male and female Aedes aegypti mosquitoes were released in the cage and sampled every 3–4 days to determine daily survival within the cage; log linear regression from BG-sentinel trapping collections produced an estimated daily survival of 0.93 and 0.78 for females and males, respectively. Conclusions/Significance The MRF SFS allows us to test novel control strategies within a secure, contained environment. The air-conditioning system maintains conditions within the MRF cages comparable to outside ambient conditions. This cage provides a realistic transitional platform between the laboratory and the field in which to test novel control measures on quarantine level insects.


Journal of Medical Entomology | 2008

Rapid Estimation of Aedes aegypti Population Size Using Simulation Modeling, with a Novel Approach to Calibration and Field Validation

Craig R. Williams; Petrina H. Johnson; Sharron A. Long; Luke P. Rapley; Scott A. Ritchie

Abstract New approaches for control of the dengue vector Aedes aegypti (L.) are being developed, including the potential introduction of life-shortening symbiont bacteria into field populations and the release of transgenic strains with reduced vector competency. With these new approaches comes the need for rapid estimations of existing field population size. Here, we describe the use of simulation modeling with container-inhabiting mosquito simulation (CIMSiM) for estimation of Ae. aegypti pupal crop size in north Queensland, Australia. CIMSiM was calibrated for local conditions by deploying “sentinel key containers” (tire, 2-liter plastic bucket, 0.6-liter pot plant base, and tarpaulin indentation) in which water flux and pupal productivity were studied for 72 d. Iterative adjustment of CIMSiM parameters was used to fit model outputs to match that of sentinel key containers. This calibrated model was then used in a blind field validation, in which breeding container and local meteorological data were used to populate CIMSiM, and model outputs were compared with a field pupal survey. Actual pupae per ha during two 10-d periods in 2007 fell within 95% confidence intervals of simulated pupal crop estimates made by 10 replicate simulations in CIMSiM, thus providing a successful field validation. Although the stochasticity of the field environment can never be wholly simulated, CIMSiM can provide field-validated estimates of pupal crop in a timely manner by using simple container surveys.


Journal of Medical Entomology | 2009

Genetic Structure of Aedes aegypti in Australia and Vietnam Revealed by Microsatellite and Exon Primed Intron Crossing Markers Suggests Feasibility of Local Control Options

Nancy M. Endersby; Ary A. Hoffmann; Vanessa L. White; S. Lowenstein; Scott A. Ritchie; Petrina H. Johnson; Luke P. Rapley; Peter A. Ryan; Vu Sinh Nam; Nguyen Thi Yen; P. Kittiyapong; Andrew R. Weeks

ABSTRACT The distribution of Aedes aegypti (L.) in Australia is currently restricted to northern Queensland, but it has been more extensive in the past. In this study, we evaluate the genetic structure of Ae. aegypti populations in Australia and Vietnam and consider genetic differentiation between mosquitoes from these areas and those from a population in Thailand. Six microsatellites and two exon primed intron crossing markers were used to assess isolation by distance across all populations and also within the Australian sample. Investigations of founder effects, amount of molecular variation between and within regions and comparison of FST values among Australian and Vietnamese populations were made to assess the scale of movement of Ae. aegypti. Genetic control methods are under development for mosquito vector populations including the dengue vector Ae. aegypti. The success of these control methods will depend on the population structure of the target species including population size and rates of movement among populations. Releases of modified mosquitoes could target local populations that show a high degree of isolation from surrounding populations, potentially allowing new variants to become established in one region with eventual dispersal to other regions.

Collaboration


Dive into the Petrina H. Johnson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luke P. Rapley

Cooperative Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter A. Ryan

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig R. Williams

University of South Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian H. Kay

QIMR Berghofer Medical Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge