Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Craig R. Williams is active.

Publication


Featured researches published by Craig R. Williams.


Journal of The American Mosquito Control Association | 2006

FIELD EFFICACY OF THE BG-SENTINEL COMPARED WITH CDC BACKPACK ASPIRATORS AND CO2-BAITED EVS TRAPS FOR COLLECTION OF ADULT AEDES AEGYPTI IN CAIRNS, QUEENSLAND, AUSTRALIA

Craig R. Williams; Sharron A. Long; Richard C. Russell; Scott A. Ritchie

ABSTRACT In this study, we compared the efficacy of the newly available BG-Sentinel with an established “gold standard,” the CDC Backpack Aspirator, and a CO2-baited EVS trap for the collection of Aedes aegypti (L.) in Cairns, Australia. BG-Sentinels collected significantly more (P = 0.017) female Ae. aegypti (mean per collection, 1.92 ± 0.39) than both the CDC Backpack Aspirator (1.00 ± 0.35) and the EVS trap (0.71 ± 0.27). Male-only and combined male-female Ae. aegypti collections for the BG-Sentinel and the CDC Backpack Aspirator were also greater than EVS trap collections. The CDC Backpack Aspirator and the BG-Sentinel captured proportionally fewer females compared with the EVS trap. The BG-Sentinel was the most Ae. aegypti-specific collection method. The CDC Backpack Aspirator collected proportionally more bloodfed Ae. aegypti than the other methods, which collected a greater proportion of nullipars. The data presented here will aid researchers in deciding what Ae. aegypti sampling device best suits their needs. BG-Sentinels and CDC Backpack Aspirators should be considered as alternatives to human-bait collections for Ae. aegypti sampling.


Proceedings of the National Academy of Sciences of the United States of America | 2006

The use of transcriptional profiles to predict adult mosquito age under field conditions

Peter E. Cook; Leon E. Hugo; Iñaki Iturbe-Ormaetxe; Craig R. Williams; Stephen F. Chenoweth; Scott A. Ritchie; Peter A. Ryan; Brian H. Kay; Mark W. Blows; Scott L. O'Neill

Age is a critical determinant of an adult female mosquitos ability to transmit a range of human pathogens. Despite its central importance, relatively few methods exist with which to accurately determine chronological age of field-caught mosquitoes. This fact is a major constraint on our ability to fully understand the relative importance of vector longevity to disease transmission in different ecological contexts. It also limits our ability to evaluate novel disease control strategies that specifically target mosquito longevity. We report the development of a transcriptional profiling approach to determine age of adult female Aedes aegypti under field conditions. We demonstrate that this approach surpasses current cuticular hydrocarbon methods for both accuracy of predicted age as well as the upper limits at which age can be reliably predicted. The method is based on genes that display age-dependent expression in a range of dipteran insects and, as such, is likely to be broadly applicable to other disease vectors.


The Journal of Experimental Biology | 2009

Increased locomotor activity and metabolism of Aedes aegypti infected with a life-shortening strain of Wolbachia pipientis

Oliver Evans; Eric P. Caragata; Conor J. McMeniman; Megan Woolfit; David C. Green; Craig R. Williams; Craig E. Franklin; Scott L. O'Neill; Elizabeth A. McGraw

SUMMARY A virulent strain of the obligate intracellular bacterium Wolbachia pipientis that shortens insect lifespan has recently been transinfected into the primary mosquito vector of dengue virus, Aedes aegypti L. The microbes ability to shorten lifespan and spread through host populations under the action of cytoplasmic incompatibility means it has the potential to be used as a biocontrol agent to reduce dengue virus transmission. Wolbachia is present in many host tissues and may have local effects on diverse biological processes. In other insects, Wolbachia infections have been shown to alter locomotor activity and response time to food cues. In mosquitoes, locomotor performance relates to the location of mates, human hosts, resting sites and oviposition sites. We have therefore examined the effect of the virulent, life-shortening Wolbachia strain wMelPop on the locomotion of Ae. aegypti as they age and as the pathogenicity of the infection increases. In parallel experiments we also examined CO2 production as a proxy for metabolic rate, to investigate a potential mechanistic explanation for any changes in locomotion. Contrary to expectation, we found that the infection increased activity and metabolic rate and that these effects were relatively consistent over the insects lifespan. The results do not fit a standard model of bacterial pathogenesis in insects, and instead may reveal additional physiological changes induced by infection, such as either increased hunger or defects in the nervous system.


Medical and Veterinary Entomology | 2009

A lethal ovitrap-based mass trapping scheme for dengue control in Australia: II. Impact on populations of the mosquito Aedes aegypti

Luke P. Rapley; Petrina H. Johnson; Craig R. Williams; R. M. Silcock; M. Larkman; Sharron A. Long; Richard C. Russell; Scott A. Ritchie

In Cairns, Australia, the impacts on Aedes aegypti L. (Diptera: Culicidae) populations of two types of ‘lure & kill’ (L&K) lethal ovitraps (LOs), the standard lethal ovitrap (SLO) and the biodegradable lethal ovitrap (BLO) were measured during three mass‐trapping interventions. To assess the efficacy of the SLO, two interventions (one dry season and one wet season) were conducted in three discrete areas, each lasting 4 weeks, with the following treatments: (i) SLOs (>200 traps, ∼4/premise), BG‐sentinel traps (BGSs; ∼15, 1/premise) and larval control (container reduction and methoprene treatment) and (ii) larval control alone, and (iii) untreated control. Female Ae. aegypti populations were monitored for 4 weeks pre‐ and post‐treatment in all three areas using BGSs and sticky ovitraps (SOs) or non‐lethal regular ovitraps (ROs). In the dry season, 206 SLOs and 15 BGSs set at 54 and 15 houses, respectively, caught and killed an estimated 419 and 73 female Ae. aegypti, respectively. No significant decrease in collection size of female Ae. aegypti could be attributed to the treatments. In the wet season, 243 SLOs and 15 BGSs killed ∼993 and 119 female Ae. aegypti, respectively. The mean number of female Ae. aegypti collected after 4 weeks with SOs and BGSs was significantly less than the control (LSD post‐hoc test). The third mass‐trapping intervention was conducted using the BLO during the wet season in Cairns. For this trial, three treatment areas were each provided with BLOs (>500, ∼4/premise) plus larval control, and an untreated control area was designated. Adult female Ae. aegypti were collected for 4 weeks pre‐ and post‐treatment using 15 BGSs and 20 SOs. During this period, 53.2% of BLOs contained a total of 6654 Ae. aegypti eggs. Over the intervention period, collections of Ae. aegypti in the treatment areas were significantly less than in the control area for BGSs but not SOs. An influx of relatively large numbers of young females may have confounded the measurement of changes in populations of older females in these studies. This is an important issue, with implications for assessing delayed action control measures, such as LOs and parasites/pathogens that aim to change mosquito age structure. Finally, the high public acceptability of SLOs and BLOs, coupled with significant impacts on female Ae. aegypti populations in two of the three interventions reported here, suggest that mass trapping with SLOs and BLOs can be an effective component of a dengue control strategy.


Tropical Medicine & International Health | 2010

The development of predictive tools for pre-emptive dengue vector control: a study of Aedes aegypti abundance and meteorological variables in North Queensland, Australia

Aishah H. Azil; Sharron A. Long; Scott A. Ritchie; Craig R. Williams

Objectives  To describe the meteorological influences on adult dengue vector abundance in Australia for the development of predictive models to trigger pre‐emptive control operation.


Journal of Medical Entomology | 2008

Rapid Estimation of Aedes aegypti Population Size Using Simulation Modeling, with a Novel Approach to Calibration and Field Validation

Craig R. Williams; Petrina H. Johnson; Sharron A. Long; Luke P. Rapley; Scott A. Ritchie

Abstract New approaches for control of the dengue vector Aedes aegypti (L.) are being developed, including the potential introduction of life-shortening symbiont bacteria into field populations and the release of transgenic strains with reduced vector competency. With these new approaches comes the need for rapid estimations of existing field population size. Here, we describe the use of simulation modeling with container-inhabiting mosquito simulation (CIMSiM) for estimation of Ae. aegypti pupal crop size in north Queensland, Australia. CIMSiM was calibrated for local conditions by deploying “sentinel key containers” (tire, 2-liter plastic bucket, 0.6-liter pot plant base, and tarpaulin indentation) in which water flux and pupal productivity were studied for 72 d. Iterative adjustment of CIMSiM parameters was used to fit model outputs to match that of sentinel key containers. This calibrated model was then used in a blind field validation, in which breeding container and local meteorological data were used to populate CIMSiM, and model outputs were compared with a field pupal survey. Actual pupae per ha during two 10-d periods in 2007 fell within 95% confidence intervals of simulated pupal crop estimates made by 10 replicate simulations in CIMSiM, thus providing a successful field validation. Although the stochasticity of the field environment can never be wholly simulated, CIMSiM can provide field-validated estimates of pupal crop in a timely manner by using simple container surveys.


PLOS Neglected Tropical Diseases | 2010

The extinction of dengue through natural vulnerability of its vectors.

Craig R. Williams; Christie A. Bader; Michael R. Kearney; Scott A. Ritchie; Richard C. Russell

Background Dengue is the worlds most important mosquito-borne viral illness. Successful future management of this disease requires an understanding of the population dynamics of the vector, especially in the context of changing climates. Our capacity to predict future dynamics is reflected in our ability to explain the significant historical changes in the distribution and abundance of the disease and its vector. Methodology/Principal Findings Here we combine daily weather records with simulation modelling techniques to explain vector (Aedes aegypti (L.)) persistence within its current and historic ranges in Australia. We show that, in regions where dengue presently occurs in Australia (the Wet Tropics region of Far North Queensland), conditions are persistently suitable for year-round adult Ae. aegypti activity and oviposition. In the historic range, however, the vector is vulnerable to periodic extinction due to the combined influence of adult activity constraints and stochastic loss of suitable oviposition sites. Conclusions/Significance These results, together with changes in water-storage behaviour by humans, can explain the observed historical range contraction of the disease vector. For these reasons, future eradication of dengue in wet tropical regions will be extremely difficult through classical mosquito control methods alone. However, control of Ae. aegypti in sub-tropical and temperate regions will be greatly facilitated by government policy regulating domestic water-storage. Exploitation of the natural vulnerabilities of dengue vectors (e.g., habitat specificity, climatic limitations) should be integrated with the emerging novel transgenic and symbiotic bacterial control techniques to develop future control and elimination strategies.


Medical and Veterinary Entomology | 2009

A lethal ovitrap-based mass trapping scheme for dengue control in Australia: I. Public acceptability and performance of lethal ovitraps

Scott A. Ritchie; Luke P. Rapley; Craig R. Williams; Petrina H. Johnson; M. Larkman; R. M. Silcock; Sharron A. Long; Richard C. Russell

We report on the first field evaluation of the public acceptability and performance of two types of lethal ovitrap (LO) in three separate trials in Cairns, Australia. Health workers were able to set standard lethal ovitraps (SLOs) in 75 and 71% of premise yards in the wet and dry season, respectively, and biodegradable lethal ovitraps (BLOs) in 93% of yards. Public acceptance, measured as retention of traps by residents, was high for both trap types, with <9% of traps missing after 4 weeks. Traps retaining water after 4 weeks were 78 and 34% for the two SLO trials and 58% for the BLOs. The ‘failure rate’ in the 535 BLOs set in the field for 4 weeks was 47%, of which 19% were lost, 51% had holes from probable insect chewing, 23% were knocked over, 7% had dried by evaporation and 1% were split. There was no significant difference in the failure rate of BLOs set on porous (grass, soil and mulch) versus solid (tiles, concrete, wood and stone) substrates. The SLOs and the BLOs were readily acceptable to ovipositing Aedes aegypti L. (Diptera: Culicidae); the mean number of eggs/trap was 6 and 15, for the dry season and wet season SLO trial, respectively, and 15 for the BLO wet season trial. Indeed, 84–94% of premise yards had egg positive SLOs or BLOs. A high percentage of both wet and dry season SLOs (29 and 70%, respectively) and BLOs (62%) that were dry after 4 weeks were egg positive, indicating the traps had functioned. Lethal strips from SLOs and BLOs that had been exposed for 4 weeks killed 83 and 74%, respectively, of gravid Ae. aegypti in laboratory assays. These results indicate that mass trapping schemes using SLOs and BLOs are not rejected by the public and effectively target gravid Ae. aegypti. The impact of the interventions on mosquito populations is described in a companion paper.


Nature Protocols | 2007

Predicting the age of mosquitoes using transcriptional profiles

Peter E. Cook; Leon E. Hugo; Iñaki Iturbe-Ormaetxe; Craig R. Williams; Stephen F. Chenoweth; Scott A. Ritchie; Peter A. Ryan; Brian H. Kay; Mark W. Blows; Scott L. O'Neill

The use of transcriptional profiles for predicting mosquito age is a novel solution for the longstanding problem of determining the age of field-caught mosquitoes. Female mosquito age is of central importance to the transmission of a range of human pathogens. The transcriptional age-grading protocol we present here was developed in Aedes aegypti, principally as a research tool. Age predictions are made on the basis of transcriptional data collected from mosquitoes of known age. The abundance of eight candidate gene transcripts is quantified relative to a reference gene using quantitative reverse transcriptase-PCR (RT-PCR). Normalized gene expression (GE) measures are analyzed using canonical redundancy analysis to obtain a multivariate predictor of mosquito age. The relationship between the first redundancy variate and known age is used as the calibration model. Normalized GE measures are quantified for wild-caught mosquitoes, and ages are then predicted using this calibration model. Rearing of mosquitoes to specific ages for calibration data can take up to 40 d. Molecular analysis of transcript abundance, and subsequent age predictions, should take ∼3–5 d for 100 individuals.


Journal of The American Mosquito Control Association | 2006

Laboratory and field assessment of some kairomone blends for host-seeking Aedes aegypti

Craig R. Williams; Ramona Bergbauer; Martin Geier; Daniel L. Kline; Ulrich R. Bernier; Richard C. Russell; Scott A. Ritchie

ABSTRACT Using laboratory Y-tube olfactometers, the attractiveness of lactic acid and 2 kairomone blends from the United States Department of Agriculture (USDA) and BioGents GmbH (BG) was assessed for attractiveness to Aedes aegypti. Four geographically disparate populations were assessed: North Queensland Australia (NQA), Florida USA, Minas Gerais Brazil (MGB), and Singapore. In descending order, populations were attracted to USDA, BG blends, and lactic acid. MGB was poorly attracted to lactic acid alone. The blends were less attractive than human odor. Proprietary blends were modified, and their attractiveness was assessed to find the optimum attractive mixture for NQA. Adding acetone to BG, and ammonia and caproic acid to USDA, improved attractiveness in the laboratory. Field attractiveness was assessed by coupling the blends with a newly developed BG-Sentinel Ae. aegypti trap. Trials were carried out using the BG blend, BG blend plus acetone, USDA blend, USDA blend plus ammonia and caproic acid, and a control trap with no kairomones. The traps were highly effective, with mean 24-h collections up to 11.15 Ae. aegypti per trap, and this species made up 91.7% of collections. However, the effectiveness of the unbaited control trap indicated that the BG-Sentinel has visual attractive properties for Ae. aegypti and that the kairomone lures added little to trap performance in NQA.

Collaboration


Dive into the Craig R. Williams's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Harley

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Peng Bi

University of Adelaide

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Kokkinn

University of South Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qiyong Liu

Chinese Center for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Elvina Viennet

Australian National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge