Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peyman Ezzati is active.

Publication


Featured researches published by Peyman Ezzati.


BMC Microbiology | 2012

Proteomic analysis of Clostridium thermocellum core metabolism: relative protein expression profiles and growth phase-dependent changes in protein expression.

Thomas Rydzak; Peter McQueen; Oleg V. Krokhin; Vic Spicer; Peyman Ezzati; Ravi C. Dwivedi; Dmitry Shamshurin; David B. Levin; John A. Wilkins; Richard Sparling

BackgroundClostridium thermocellum produces H2 and ethanol, as well as CO2, acetate, formate, and lactate, directly from cellulosic biomass. It is therefore an attractive model for biofuel production via consolidated bioprocessing. Optimization of end-product yields and titres is crucial for making biofuel production economically feasible. Relative protein expression profiles may provide targets for metabolic engineering, while understanding changes in protein expression and metabolism in response to carbon limitation, pH, and growth phase may aid in reactor optimization. We performed shotgun 2D-HPLC-MS/MS on closed-batch cellobiose-grown exponential phase C. thermocellum cell-free extracts to determine relative protein expression profiles of core metabolic proteins involved carbohydrate utilization, energy conservation, and end-product synthesis. iTRAQ (isobaric tag for relative and absolute quantitation) based protein quantitation was used to determine changes in core metabolic proteins in response to growth phase.ResultsRelative abundance profiles revealed differential levels of putative enzymes capable of catalyzing parallel pathways. The majority of proteins involved in pyruvate catabolism and end-product synthesis were detected with high abundance, with the exception of aldehyde dehydrogenase, ferredoxin-dependent Ech-type [NiFe]-hydrogenase, and RNF-type NADH:ferredoxin oxidoreductase. Using 4-plex 2D-HPLC-MS/MS, 24% of the 144 core metabolism proteins detected demonstrated moderate changes in expression during transition from exponential to stationary phase. Notably, proteins involved in pyruvate synthesis decreased in stationary phase, whereas proteins involved in glycogen metabolism, pyruvate catabolism, and end-product synthesis increased in stationary phase. Several proteins that may directly dictate end-product synthesis patterns, including pyruvate:ferredoxin oxidoreductases, alcohol dehydrogenases, and a putative bifurcating hydrogenase, demonstrated differential expression during transition from exponential to stationary phase.ConclusionsRelative expression profiles demonstrate which proteins are likely utilized in carbohydrate utilization and end-product synthesis and suggest that H2 synthesis occurs via bifurcating hydrogenases while ethanol synthesis is predominantly catalyzed by a bifunctional aldehyde/alcohol dehydrogenase. Differences in expression profiles of core metabolic proteins in response to growth phase may dictate carbon and electron flux towards energy storage compounds and end-products. Combined knowledge of relative protein expression levels and their changes in response to physiological conditions may aid in targeted metabolic engineering strategies and optimization of fermentation conditions for improvement of biofuels production.


PLOS ONE | 2011

Requirement of Podocalyxin in TGF-Beta Induced Epithelial Mesenchymal Transition

Xiaobo Meng; Peyman Ezzati; John A. Wilkins

Epithelial mesenchymal transition (EMT) is characterized by the development of mesenchymal properties such as a fibroblast-like morphology with altered cytoskeletal organization and enhanced migratory potential. We report that the expression of podocalyxin (PODXL), a member of the CD34 family, is markedly increased during TGF-β induced EMT. PODXL is enriched on the leading edges of migrating A549 cells. Silencing of podocalyxin expression reduced cell ruffle formation, spreading, migration and affected the expression patterns of several proteins that normally change during EMT (e.g., vimentin, E-cadherin). Cytoskeletion assembly in EMT was also found to be dependent on the production of podocalyin. Compositional analysis of podocalyxin containing immunoprecipitates revealed that collagen type 1 was consistently associated with these isolates. Collagen type 1 was also found to co-localize with podocalyxin on the leading edges of migrating cells. The interactions with collagen may be a critical aspect of podocalyxin function. Podocalyxin is an important regulator of the EMT like process as it regulates the loss of epithelial features and the acquisition of a motile phenotype.


Journal of Proteome Research | 2012

Response of primary human airway epithelial cells to influenza infection: a quantitative proteomic study.

Andrea Kroeker; Peyman Ezzati; Andrew J. Halayko; Kevin M. Coombs

Influenza A virus exerts a large health burden during both yearly epidemics and global pandemics. However, designing effective vaccine and treatment options has proven difficult since the virus evolves rapidly. Therefore, it may be beneficial to identify host proteins associated with viral infection and replication to establish potential new antiviral targets. We have previously measured host protein responses in continuously cultured A549 cells infected with mouse-adapted virus strain A/PR/8/34(H1N1; PR8). We here identify and measure host proteins differentially regulated in more relevant primary human bronchial airway epithelial (HBAE) cells. A total of 3740 cytosolic HBAE proteins were identified by 2D LC–MS/MS, of which 52 were up-regulated ≥2-fold and 41 were down-regulated ≥2-fold after PR8 infection. Up-regulated HBAE proteins clustered primarily into interferon signaling, other host defense processes, and molecular transport, whereas down-regulated proteins were associated with cell death signaling pathways, cell adhesion and motility, and lipid metabolism. Comparison to influenza-infected A549 cells indicated some common influenza-induced host cell alterations, including defense response, molecular transport proteins, and cell adhesion. However, HBAE-specific alterations consisted of interferon and cell death signaling. These data point to important differences between influenza replication in continuous and primary cell lines and/or alveolar and bronchial epithelial cells.


Archivum Immunologiae Et Therapiae Experimentalis | 2007

Selected technologies to control genes and their products for experimental and clinical purposes

Helen K. Alexander; Evan P. Booy; Wenyan Xiao; Peyman Ezzati; Heinrich Baust; Marek Los

Abstract.“On-demand” regulation of gene expression is a powerful tool to elucidate the functions of proteins and biologically-active RNAs. We describe here three different approaches to the regulation of expression or activity of genes or proteins. Promoter-based regulation of gene expression was among the most rapidly developing techniques in the 1980s and 1990s. Here we provide basic information and also some characteristics of the metallothionein-promoter-based system, the tet-off system, Muristerone-A-regulated expression through the ecdysone response element, RheoSwitch®, coumermycin/novobiocin-regulated gene expression, chemical dimerizer-based promoter activation systems, the “Dual Drug Control” system, “constitutive androstane receptor” based regulation of gene expression, and RU486/mifepristone-driven regulation of promoter activity. A large part of the review concentrates on the principles and usage of various RNA interference techniques (RNAi: siRNA, shRNA, and miRNA-based methods). Finally, the last part of the review deals with historically the oldest, but still widely used, methods of temperature-dependent regulation of enzymatic activity or protein stability (temperature-sensitive mutants). Due to space limitations we do not describe in detail but just mention the tet-regulated systems and also fusion-protein-based regulation of protein activity, such as estrogen-receptor fusion proteins. The information provided below is aimed to assist researchers in choosing the most appropriate method for the planned development of experimental systems with regulated expression or activity of studied proteins.


Analytical Chemistry | 2016

3D HPLC-MS with Reversed-Phase Separation Functionality in All Three Dimensions for Large-Scale Bottom-Up Proteomics and Peptide Retention Data Collection

Vic Spicer; Peyman Ezzati; Haley Neustaeter; Ronald C. Beavis; John A. Wilkins; Oleg V. Krokhin

The growing complexity of proteomics samples and the desire for deeper analysis drive the development of both better MS instrument and advanced multidimensional separation schemes. We applied 1D, 2D, and 3D LC-MS/MS separation protocols (all of reversed-phase C18 functionality) to a tryptic digest of whole Jurkat cell lysate to estimate the depth of proteome coverage and to collect high-quality peptide retention information. We varied pH of the eluent and hydrophobicity of ion-pairing modifier to achieve good separation orthogonality (utilization of MS instrument time). All separation modes employed identical LC settings with formic-acid-based eluents in the last dimension. The 2D protocol used a high pH-low pH scheme with 21 concatenated fractions. In the 3D protocol, six concatenated fractions from the first dimension (C18, heptafluorobutyric acid) were analyzed using the identical 2D LC-MS procedure. This approach permitted a detailed evaluation of the analysis output consuming 21× and 126× the analysis time and sample load compared to 1D. Acquisition over 189 h of instrument time in 3D mode resulted in the identification of ∼14 000 proteins and ∼250 000 unique peptides. We estimated the dynamic range via peak intensity at the MS(2) level as approximately 10(4.2), 10(5.6), and 10(6.2) for the 1D, 2D, and 3D protocols, respectively. The uniform distribution of the number of acquired MS/MS, protein, and peptide identifications across all 126 fractions and through the chromatographic time scale in the last LC-MS stage indicates good separation orthogonality. The protocol is scalable and is amenable to the use of peptide retention prediction in all dimensions. All these features make it a very good candidate for large-scale bottom-up proteomic runs, which target both protein identification as well as the collection of peptide retention data sets for targeted quantitative applications.


Clinical Proteomics | 2013

Proteomic characterization of serine hydrolase activity and composition in normal urine

Mario Navarrete; Julie Ho; Oleg V. Krokhin; Peyman Ezzati; Claudio Rigatto; Martina Reslerova; David Rush; Peter Nickerson; John A. Wilkins

BackgroundSerine hydrolases constitute a large enzyme family involved in a diversity of proteolytic and metabolic processes which are essential for many aspects of normal physiology. The roles of serine hydrolases in renal function are largely unknown and monitoring their activity may provide important insights into renal physiology. The goal of this study was to profile urinary serine hydrolases with activity-based protein profiling (ABPP) and to perform an in-depth compositional analysis.MethodsEighteen healthy individuals provided random, mid-stream urine samples. ABPP was performed by reacting urines (n = 18) with a rhodamine-tagged fluorophosphonate probe and visualizing on SDS-PAGE. Active serine hydrolases were isolated with affinity purification and identified on MS-MS. Enzyme activity was confirmed with substrate specific assays. A complementary 2D LC/MS-MS analysis was performed to evaluate the composition of serine hydrolases in urine.ResultsEnzyme activity was closely, but not exclusively, correlated with protein quantity. Affinity purification and MS/MS identified 13 active serine hydrolases. The epithelial sodium channel (ENaC) and calcium channel (TRPV5) regulators, tissue kallikrein and plasmin were identified in active forms, suggesting a potential role in regulating sodium and calcium reabsorption in a healthy human model. Complement C1r subcomponent-like protein, mannan binding lectin serine protease 2 and myeloblastin (proteinase 3) were also identified in active forms. The in-depth compositional analysis identified 62 serine hydrolases in urine independent of activity state.ConclusionsThis study identified luminal regulators of electrolyte homeostasis in an active state in the urine, which suggests tissue kallikrein and plasmin may be functionally relevant in healthy individuals. Additional serine hydrolases were identified in an active form that may contribute to regulating innate immunity of the urinary tract. Finally, the optimized ABPP technique in urine demonstrates its feasibility, reproducibility and potential applicability to profiling urinary enzyme activity in different renal physiological and pathophysiological conditions.


Journal of Proteome Research | 2013

Influenza A infection of primary human airway epithelial cells up-regulates proteins related to purine metabolism and ubiquitin-related signaling.

Andrea Kroeker; Peyman Ezzati; Kevin M. Coombs; Andrew J. Halayko

Virus-host interactions are important determinants of virus replication and immune responses, but they are not well-defined. In this study we analyzed quantitative host protein alterations in nuclei-enriched fractions from multiple primary human bronchial airway epithelial (HBAE) cells infected by an H1N1 influenza A virus (A/PR/8/34). We first developed an effective detergent-free nuclear lysis method that was coupled with in-solution digestion and LC-MS/MS. Using SILAC, we identified 837 HBAE nuclear proteins in three different donors and compared their responses to infection at 24 h. Some proteins were altered in all three donors, of which 94 were up-regulated and 13 were down-regulated by at least 1.5-fold. Many of these up-regulated proteins clustered into purine biosynthesis, carbohydrate metabolism, and protein modification. Down-regulated proteins were not associated with any specific pathways or processes. These findings further our understanding of cellular processes that are altered in response to influenza in primary epithelial cells and may be beneficial in the search for host proteins that may be targeted for antiviral therapy.


Science Translational Medicine | 2015

Identification of broadly conserved cross-species protective Leishmania antigen and its responding CD4+ T cells

Zhirong Mou; Jintao Li; Thouraya Boussoffara; Hiroyuki Kishi; Hiroshi Hamana; Peyman Ezzati; Chuanmin Hu; Weijing Yi; Dong Liu; Forough Khadem; Ifeoma Okwor; Ping Jia; Kiyomi Shitaoka; Shufeng Wang; Momar Ndao; Christine A. Petersen; Jianping Chen; Sima Rafati; Hechmi Louzir; Atsushi Muraguchi; John A. Wilkins; Jude E. Uzonna

A Leishmania protein vaccine elicited immune responses and mediated strong cross-species protection. Committing Leishmania vaccine to memory Leishmaniasis is a potentially fatal disease caused by a protozoal parasite transmitted through sand fly bites. There is currently no vaccine, but affected individuals are resistant to further infection, suggesting vaccination is possible. Now, Mou et al. have found that vaccination with an immunodominant antigen—phosphoenolpyruvate carboxykinase (PEPCK)—protects against leishmaniasis. The authors identified PEPCK by examining peptides that could elicit memory T cell responses from healed but not uninfected animals. PEPCK was conserved in all pathogenic Leishmania and induced immune responses in both infected mice and human cells. Protection in mice was effective across species and was durable, supporting testing of a PEPCK-based vaccine in humans. There is currently no clinically effective vaccine against leishmaniasis because of poor understanding of the antigens that elicit dominant T cell immunity. Using proteomics and cellular immunology, we identified a dominant naturally processed peptide (PEPCK335–351) derived from Leishmania glycosomal phosphoenolpyruvate carboxykinase (PEPCK). PEPCK was conserved in all pathogenic Leishmania, expressed in glycosomes of promastigotes and amastigotes, and elicited strong CD4+ T cell responses in infected mice and humans. I-Ab–PEPCK335–351 tetramer identified protective Leishmania-specific CD4+ T cells at a clonal level, which comprised ~20% of all Leishmania-reactive CD4+ T cells at the peak of infection. PEPCK335–351–specific CD4+ T cells were oligoclonal in their T cell receptor usage, produced polyfunctional cytokines (interleukin-2, interferon-γ, and tumor necrosis factor), and underwent expansion, effector activities, contraction, and stable maintenance after lesion resolution. Vaccination with PEPCK peptide, DNA expressing full-length PEPCK, or rPEPCK induced strong durable cross-species protection in both resistant and susceptible mice. The effectiveness and durability of protection in vaccinated mice support the development of a broadly cross-species protective vaccine against different forms of leishmaniasis by targeting PEPCK.


Nucleic Acids Research | 2017

Human DDX21 binds and unwinds RNA guanine quadruplexes.

Ewan K. S. McRae; Evan P. Booy; Aniel Moya-Torres; Peyman Ezzati; Jörg Stetefeld; Sean A. McKenna

Abstract Guanine quadruplexes (G4s) are an important structure of nucleic acids (DNA and RNA) with roles in several cellular processes. RNA G4s require specialized unwinding enzymes, of which only two have been previously identified. We describe the results of a simple and specific mass spectrometry guided method used to screen HEK293T cell lysate for G4 binding proteins. From these results, we validated the RNA helicase protein DDX21. DDX21 is an established RNA helicase, but has not yet been validated as a G4 binding protein. Through biochemical techniques, we confirm that DDX21-quadruplex RNA interactions are direct and mediated via a site of interaction at the C-terminus of the protein. Furthermore, through monitoring changes in nuclease sensitivity we show that DDX21 can unwind RNA G4. Finally, as proof of principle, we demonstrate the ability of DDX21 to suppress the expression of a protein with G4s in the 3΄ UTR of its mRNA.


Analytical Chemistry | 2014

N-capping motifs promote interaction of amphipathic helical peptides with hydrophobic surfaces and drastically alter hydrophobicity values of individual amino acids.

Spicer; Lao Yw; Dmitry Shamshurin; Peyman Ezzati; John A. Wilkins; Oleg V. Krokhin

Capping rules, which govern interactions of helical peptides with hydrophobic surfaces, were never established before due to lack of methods for the direct measurement of polypeptide structure on the interphase boundary. We employed proteomic techniques and peptide retention modeling in reversed-phase chromatography to generate a data set sufficient for amino acid population analysis at helix ends. We found that interactions of amphipathic helical peptides with a hydrophobic C18 phase are induced by a unique motif featuring hydrophobic residues in the N1 and N2 positions adjacent to the N-cap (Asn, Asp, Ser, Thr, Gly), followed by Glu, Gln, or Asp in position N3 to complete a capping box. A favorable N-capping arrangement prior to amphipathic helix may result in the highest hydrophobicity (retention on C18 columns) of Asp/Asn (or Glu/Gln) peptide analogues among all naturally occurring amino acids when placed in N-cap or N3 position, respectively. These results contradict all previously reported hydrophobicity scales and provide new insights into our understanding of the phenomenon of hydrophobic interactions.

Collaboration


Dive into the Peyman Ezzati's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vic Spicer

University of Manitoba

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge