Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Phat M. Dang is active.

Publication


Featured researches published by Phat M. Dang.


Genome Biology | 2006

Large-scale gene discovery in the pea aphid Acyrthosiphon pisum (Hemiptera)

Beatriz Sabater-Muñoz; Fabrice Legeai; Claude Rispe; Joël Bonhomme; Peter K. Dearden; Carole Dossat; Aymeric Duclert; Jean Pierre Gauthier; Danièle Giblot Ducray; Wayne B. Hunter; Phat M. Dang; Srini Kambhampati; David Martínez-Torres; Teresa Cortes; Andrés Moya; Atsushi Nakabachi; Cathy Philippe; Nathalie Prunier-Leterme; Yvan Rahbé; Jean Simon; David L. Stern; Patrick Wincker; Denis Tagu

Aphids are the leading pests in agricultural crops. A large-scale sequencing of 40,904 ESTs from the pea aphid Acyrthosiphon pisum was carried out to define a catalog of 12,082 unique transcripts. A strong AT bias was found, indicating a compositional shift between Drosophila melanogaster and A. pisum. An in silico profiling analysis characterized 135 transcripts specific to pea-aphid tissues (relating to bacteriocytes and parthenogenetic embryos). This project is the first to address the genetics of the Hemiptera and of a hemimetabolous insect.


International Journal of Plant Genomics | 2009

Analysis of Gene Expression Profiles in Leaf Tissues of Cultivated Peanuts and Development of EST-SSR Markers and Gene Discovery

Baozhu Guo; Xiaoping Chen; Yanbin Hong; Xuanqiang Liang; Phat M. Dang; T. B. Brenneman; C. Corley Holbrook; A. K. Culbreath

Peanut is vulnerable to a range of foliar diseases such as spotted wilt caused by Tomato spotted wilt virus (TSWV), early (Cercospora arachidicola) and late (Cercosporidium personatum) leaf spots, southern stem rot (Sclerotium rolfsii), and sclerotinia blight (Sclerotinia minor). In this study, we report the generation of 17,376 peanut expressed sequence tags (ESTs) from leaf tissues of a peanut cultivar (Tifrunner, resistant to TSWV and leaf spots) and a breeding line (GT-C20, susceptible to TSWV and leaf spots). After trimming vector and discarding low quality sequences, a total of 14,432 high-quality ESTs were selected for further analysis and deposition to GenBank. Sequence clustering resulted in 6,888 unique ESTs composed of 1,703 tentative consensus (TCs) sequences and 5185 singletons. A large number of ESTs (5717) representing genes of unknown functions were also identified. Among the unique sequences, there were 856 EST-SSRs identified. A total of 290 new EST-based SSR markers were developed and examined for amplification and polymorphism in cultivated peanut and wild species. Resequencing information of selected amplified alleles revealed that allelic diversity could be attributed mainly to differences in repeat type and length in the SSR regions. In addition, a few additional INDEL mutations and substitutions were observed in the regions flanking the microsatellite regions. In addition, some defense-related transcripts were also identified, such as putative oxalate oxidase (EU024476) and NBS-LRR domains. EST data in this study have provided a new source of information for gene discovery and development of SSR markers in cultivated peanut. A total of 16931 ESTs have been deposited to the NCBI GenBank database with accession numbers ES751523 to ES768453.


Plant Science | 2003

An expressed sequence tag (EST) set from Citrus sinensis L. Osbeck whole seedlings and the implications of further perennial source investigations

Michael G. Bausher; Robert G. Shatters; José X. Chaparro; Phat M. Dang; Wayne B. Hunter; Randall P. Niedz

Abstract Compared with the large-scale single pass cDNA sequencing entries from annual plants, the NCBI database has very little sequence information from perennial plant species. Although similar to annuals in many biochemical pathways, perennials are unique in the fact that they posses long generation times. Without short cycle reproduction as an escape mechanism, perennials have evolved alternative survival mechanisms to pathogen attack and environmental stresses. The study of these alternate strategies by way of functional genomics will greatly increase the understanding of the biochemical changes underlining stress responses in perennials. Herein we analyze a set of expressed sequence tags (ESTs) produced from a 180-day-old whole immature sweet orange citrus seedling cDNA library. From this library, 7680 cDNAs were single pass sequenced from the 5′ end, generating 6443 high quality ESTs. In the analysis, 2272 ESTs (35%) were found to significantly match ( E -value≤10 −10 ) proteins with known function in the public databases using blastx . Additionally, 1457 ESTs (23%) significantly matched proteins with unknown function and 1619 ESTs (25%) matched to proteins described as putative. The remaining 1095 ESTs (17%) failed to match with significance to any protein sequence found in the public databases. ESTs matching to the photosynthetic proteins chlorophyll A/B binding protein, plastocyanin and ribulose-1,5-bisphosphate carboxylase were abundant, 6.0% of the total. Interestingly, stress related proteins such as low molecular weight heat shock proteins, peroxidases, lipid transfer proteins and metallothionein-like proteins were also abundant, 3.6% of the total, suggesting a role for these genes in citrus seedling development .


Molecular Breeding | 2011

Mining and validating grape (Vitis L.) ESTs to develop EST-SSR markers for genotyping and mapping.

Hong Huang; Jiang Lu; Zhongbo Ren; Wayne B. Hunter; Scot E. Dowd; Phat M. Dang

Grape expressed sequence tags (ESTs) are a new resource for developing simple sequence repeat (SSR) functional markers for genotyping and genetic mapping. An integrated pipeline including several computational tools for SSR identification and functional annotation was developed to identify 6,447 EST-SSR sequences from a total collection of 215,609 grape ESTs retrieved from NCBI. The 6,447 EST-SSRs were further reduced to 1,701 non-redundant sequences via clustering analysis, and 1,037 of them were successfully designed with primer pairs flanking the SSR motifs. From them, 150 pairs of primers were randomly selected for PCR amplification, polymorphism and heterozygosity analysis in V. vinifera cvs. Riesling and Cabernet Sauvignon, and V. rotundifolia (muscadine grape) cvs. Summit and Noble, and 145 pairs of these primers yielded PCR products. Pairwise comparisons of loci between the parents Riesling and Cabernet Sauvignon showed that 72 were homozygous in both cultivars, while 70 loci were heterozygous in at least one cultivar of the two. Muscadine parents Noble and Summit had 90 homozygous SSR loci in both parents and contained 50 heterozygous loci in at least one of the two. These EST-SSR functional markers are a useful addition for grape genotyping and genome mapping.


Journal of Invertebrate Pathology | 2008

Expressed sequence tags from the red imported fire ant, Solenopsis invicta: Annotation and utilization for discovery of viruses

Steven M. Valles; Charles A. Strong; Wayne B. Hunter; Phat M. Dang; Roberto M. Pereira; David H. Oi; David F. Williams

An expression library was created and 2304 clones sequenced from a monogyne colony of Solenopsis invicta. The primary intention of the project was to utilize homologous gene identification to facilitate discovery of viruses infecting this ant pest that could potentially be used in pest management. Additional genes were identified from the ant host and associated pathogens that serve as an important resource for studying these organisms. After assembly and removal of mitochondrial and poor quality sequences, 1054 unique sequences were yielded and deposited into the GenBank database under Accession Nos. EH412746 through EH413799. At least nine expressed sequence tags (ESTs) were identified as possessing microsatellite motifs and 15 ESTs exhibited significant homology with microsporidian genes. These sequences most likely originated from Thelohania solenopsae, a well-characterized microsporidian that infects S. invicta. Six ESTs exhibited significant homology with single-stranded RNA viruses (3B4, 3F6, 11F1, 12G12, 14D5, and 24C10). Subsequent analysis of these putative viral ESTs revealed that 3B4 was most likely a ribosomal gene of S. invicta, 11F1 was a single-stranded RNA (ssRNA) virus contaminant introduced into the colony from the cricket food source, 12G12 appeared to be a plant-infecting tenuivirus also introduced into the colony as a field contaminant, and 3F6, 14D5, and 24C10 were all from a unique ssRNA virus found to infect S. invicta. The sequencing project illustrates the utility of this method for discovery of viruses and pathogens that may otherwise go undiscovered.


Insect Molecular Biology | 2010

Data mining cDNAs reveals three new single stranded RNA viruses in Nasonia (Hymenoptera: Pteromalidae)

Deodoro C. S. G. Oliveira; Wayne B. Hunter; Julienne Ng; Christopher A. Desjardins; Phat M. Dang; John H. Werren

We report three novel small RNA viruses uncovered from cDNA libraries from parasitoid wasps in the genus Nasonia. The genome of this kind of virus is a positive‐sense single‐stranded RNA with a 3′ poly(A), which facilitates cloning from cDNAs. Two of the viruses, NvitV‐1 and NvitV‐2, possess a RNA‐dependent RNA polymerase that associates them with the family Iflaviridae of the order Picornavirales. A third virus, NvitV‐3, is most similar to the Nora virus from Drosophila. A reverse transcription‐PCR method developed for NvitV‐1 indicates that it is a persistent commensal infection of Nasonia.


Comparative and Functional Genomics | 2012

Peanut (Arachis hypogaea ) Expressed Sequence Tag Project:Progress and Application

Suping Feng; Xingjun Wang; Xinyou Zhang; Phat M. Dang; C. Corley Holbrook; A. K. Culbreath; Yaoting Wu; Baozhu Guo

Many plant ESTs have been sequenced as an alternative to whole genome sequences, including peanut because of the genome size and complexity. The US peanut research community had the historic 2004 Atlanta Genomics Workshop and named the EST project as a main priority. As of August 2011, the peanut research community had deposited 252,832 ESTs in the public NCBI EST database, and this resource has been providing the community valuable tools and core foundations for various genome-scale experiments before the whole genome sequencing project. These EST resources have been used for marker development, gene cloning, microarray gene expression and genetic map construction. Certainly, the peanut EST sequence resources have been shown to have a wide range of applications and accomplished its essential role at the time of need. Then the EST project contributes to the second historic event, the Peanut Genome Project 2010 Inaugural Meeting also held in Atlanta where it was decided to sequence the entire peanut genome. After the completion of peanut whole genome sequencing, ESTs or transcriptome will continue to play an important role to fill in knowledge gaps, to identify particular genes and to explore gene function.


Journal of Economic Entomology | 2002

Pear Transformed with a Lytic Peptide Gene for Disease Control Affects Nontarget Organism, Pear Psylla (Homoptera: Psyllidae)

Gary J. Puterka; Chris Bocchetti; Phat M. Dang; Richard L. Bell; Ralph Scorza

Abstract The biology and behavior of pear psylla, Cacopsylla pyricola Foerster, on a transgenic clone of ‘Bartlett’ pear, Pyrus communis L., containing a synthetic antimicrobial gene, D5C1, was compared with that of a nontransgenic parental clone to determine whether there were any nontarget effects. The gene construct also contained the marker gene nptII (aminoglycoside 3′-phosphotransferase II) that encodes for antibiotic resistance to identify transformed plants. The purpose of the original transformation was to enhance pear resistance to the bacterial disease fireblight caused by Erwinia amylovora (Burr.) Winslow et al. The biology and behavior of pear psylla on a transgenic clone were compared with a nontransgenic parental pear clone in short- (≤7-d) and long-term (32-d) studies. Short-term studies indicated pear psylla adults preferred to settle and oviposit, and nymphs fed more and developed slightly faster, on transgenic pear compared with nontransgenic pear. In contrast, a long-term study on psylla colony development showed considerably fewer eggs, nymphs, and adults were produced on transgenic pear. Although adults reared on transgenic pear did not have weight affected, females produced fewer eggs and nymphal hatch was significantly reduced on the transgenic pear clone. Our results suggest that pear psylla biology and behavior are initially enhanced on this transgenic pear clone. However, chronic exposure of psylla populations to transformed pear plants that express the nptII marker and lytic peptide genes had detrimental effects on pear psylla reproductive biology. Field studies would be required to determine the specific effects of each gene on pear psylla biology and behavior and whether these effects would be expressed under natural conditions. The four-fold reduction in psylla population levels that resulted on this disease resistant transgenic pear line would be an added benefit to a pear integrated pest management (IPM) program. Overall, this study demonstrates that genetically altering plants to control one particular organism can have unintentional yet beneficial effects against other nontarget pest organisms in agricultural crops.


Journal of Visualized Experiments | 2015

RNAi-mediated Control of Aflatoxins in Peanut: Method to Analyze Mycotoxin Production and Transgene Expression in the Peanut/Aspergillus Pathosystem.

R. S. Arias; Phat M. Dang; Victor S. Sobolev

The Food and Agriculture Organization of the United Nations estimates that 25% of the food crops in the world are contaminated with aflatoxins. That represents 100 million tons of food being destroyed or diverted to non-human consumption each year. Aflatoxins are powerful carcinogens normally accumulated by the fungi Aspergillus flavus and A. parasiticus in cereals, nuts, root crops and other agricultural products. Silencing of five aflatoxin-synthesis genes by RNA interference (RNAi) in peanut plants was used to control aflatoxin accumulation following inoculation with A. flavus. Previously, no method existed to analyze the effectiveness of RNAi in individual peanut transgenic events, as these usually produce few seeds, and traditional methods of large field experiments under aflatoxin-conducive conditions were not an option. In the field, the probability of finding naturally contaminated seeds is often 1/100 to 1/1,000. In addition, aflatoxin contamination is not uniformly distributed. Our method uses few seeds per transgenic event, with small pieces processed for real-time PCR (RT-PCR) or small RNA sequencing, and for analysis of aflatoxin accumulation by ultra-performance liquid chromatography (UPLC). RNAi-expressing peanut lines 288-72 and 288-74, showed up to 100% reduction (p≤0.01) in aflatoxin B1 and B2 compared to the control that accumulated up to 14,000 ng.g-1 of aflatoxin B1 when inoculated with aflatoxigenic A. flavus. As reference, the maximum total of aflatoxins allowable for human consumption in the United States is 20 ng.g-1. This protocol describes the application of RNAi-mediated control of aflatoxins in transgenic peanut seeds and methods for its evaluation. We believe that its application in breeding of peanut and other crops will bring rapid advancement in this important area of science, medicine and human nutrition, and will significantly contribute to the international effort to control aflatoxins, and potentially other mycotoxins in major food crops.


Peanut Science | 2011

A Note on Development of a Low-cost and High-throughput SSR-based Genotyping Method in Peanut (Arachis hypogaea L.)

Jake Fountain; Hongde Qin; Charles Y. Chen; Phat M. Dang; Ming Li Wang; Baozhu Guo

ABSTRACT Peanut cultivar development has been dominated by conventional breeding methods, which have and will continue to play an important role. Applications of marker-assisted selection (MAS) hav...

Collaboration


Dive into the Phat M. Dang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wayne B. Hunter

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

C. Corley Holbrook

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Baozhu Guo

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Michael G. Bausher

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Charles A. Strong

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

David H. Oi

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Marshall C. Lamb

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Ming Li Wang

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Steven M. Valles

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge