Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Phil Chowienczyk is active.

Publication


Featured researches published by Phil Chowienczyk.


Journal of Hypertension | 2012

Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity

Luc M. Van Bortel; Stéphane Laurent; P. Boutouyrie; Phil Chowienczyk; John Kennedy Cruickshank; Tine De Backer; Jan Filipovsky; Sofie Huybrechts; Francesco Mattace-Raso; Athanase D. Protogerou; Giuseppe Schillaci; Patrick Segers; Sebastian Vermeersch; Thomas Weber

Stiffness of elastic arteries like the aorta predicts cardiovascular risk. By directly reflecting arterial stiffness, having the best predictive value for cardiovascular outcome and the ease of its measurement, carotid-femoral pulse wave velocity is now considered the gold standard for arterial stiffness assessment in daily practice. Many different measurement procedures have been proposed. Therefore, standardization of its measurement is urgently needed, particularly regarding the distance measurement. This consensus document advises on the measurement procedures in general and provides arguments for the use of 80% of the direct carotid-femoral distance as the most accurate distance estimate. It also advises the use of 10 m/s as new cut-off value for carotid-femoral pulse wave velocity.


Hypertension | 1998

Evidence for a Difference in Nitric Oxide Biosynthesis Between Healthy Women and Men

Pablo Forte; Barry J. Kneale; Eric Milne; Phil Chowienczyk; Atholl Johnston; Nigel Benjamin; James M. Ritter

There is indirect evidence for a gender difference in nitric oxide (NO) synthesis from vascular endothelium. The aim of the present study was to determine NO production more directly in healthy women and men by the measurement of 15N nitrate excreted in urine after the intravenous administration of L-[15N]2-guanidino arginine. Twenty-four healthy volunteers (13 men aged 22 to 40 years and 11 women aged 23 to 42 years) participated in this study. No subjects were receiving any medication. Women were studied between the 7th and 14th days of their menstrual cycles. Arterial blood pressure was measured oscillometrically, and 1.13 micromol L-[15N]2 arginine was administered intravenously after an overnight fast. Urine was collected for the next 36 hours in separate 12-hour periods. Urinary 15N/14N nitrate ratio was assessed by dry combustion in an isotope ratio mass spectrometer. Mean 36-hour urinary 15N nitrate excretion was greater in women than in men (2111+/-139 versus 1682+/-87 etamol; P<0.05). Furthermore, total urinary 15N nitrate excretion was associated inversely with the mean arterial blood pressure in the whole group of subjects (coefficient of correlation, 0.47; P=0.022). The present data show that whole-body production of NO is greater in healthy premenopausal women than in men under ambulatory conditions. The cellular origin of NO measured in this study is unknown, but differences in endothelial production could underlie differences in vascular function between men and women.


JRSM Cardiovascular Disease | 2012

Role of arterial stiffness in cardiovascular disease

Marina Cecelja; Phil Chowienczyk

Propagation of the pressure wave along the arterial tree (pulse wave velocity [PWV]) is related to the intrinsic elasticity of the arterial wall. PWV is increased in stiffer arteries and, when measured over the aorta, is an independent predictor of cardiovascular morbidity and mortality. Given the predictive power of PWV, identifying strategies that prevent or reduce stiffening may be important in prevention of cardiovascular events. One view is that aortic stiffness occurs as a result of atherosclerosis along the aorta. However, there is little or no association between PWV and classical risk factors for atherosclerosis, other than age and blood pressure. Furthermore, PWV does not increase during early stages of atherosclerosis, as measured by intima-media thickness and non-calcified atheroma, but it does increase in the presence of aortic calcification that occurs within advanced atherosclerotic plaque. Age-related widening of pulse pressure is the major cause of age-related increase in prevalence of hypertension and has been attributed to arterial stiffening. This review summarizes the methods of measuring aortic stiffness in humans, the pathophysiological mechanisms leading to aortic stiffness, including its association with atherosclerosis, and the haemodynamic consequences of increased aortic stiffness.


American Journal of Physiology-heart and Circulatory Physiology | 2008

Exercise reduces arterial pressure augmentation through vasodilation of muscular arteries in humans

Shahzad Munir; Benyu Jiang; Antoine Guilcher; Sally Brett; Simon Redwood; Michael Marber; Phil Chowienczyk

Exercise markedly influences pulse wave morphology, but the mechanism is unknown. We investigated whether effects of exercise on the arterial pulse result from alterations in stroke volume or pulse wave velocity (PWV)/large artery stiffness or reduction of pressure wave reflection. Healthy subjects (n = 25) performed bicycle ergometry. with workload increasing from 25 to 150 W for 12 min. Digital arterial pressure waveforms were recorded using a servo-controlled finger cuff. Radial arterial pressure waveforms and carotid-femoral PWV were determined by applanation tonometry. Stroke volume was measured by echocardiography, and brachial and femoral artery blood flows and diameters were measured by ultrasound. Digital waveforms were recorded continuously. Other measurements were made before and after exercise. Exercise markedly reduced late systolic and diastolic augmentation of the peripheral pressure pulse. At 15 min into recovery, stroke volume and PWV were similar to baseline values, but changes in pulse wave morphology persisted. Late systolic augmentation index (radial pulse) was reduced from 54 +/- 3.9% at baseline to 42 +/- 3.7% (P < 0.01), and diastolic augmentation index (radial pulse) was reduced from 37 +/- 1.8% to 25 +/- 2.9% (P < 0.001). These changes were accompanied by an increase in femoral blood flow (from 409 +/- 44 to 773 +/- 48 ml/min, P < 0.05) and an increase in femoral artery diameter (from 8.2 +/- 0.4 to 8.6 +/- 0.4 mm, P < 0.05). In conclusion, exercise dilates muscular arteries and reduces arterial pressure augmentation, an effect that will enhance ventricular-vascular coupling and reduce load on the left ventricle.


Journal of the American College of Cardiology | 2011

Arterial Stiffening Relates to Arterial Calcification But Not to Noncalcified Atheroma in Women A Twin Study

Marina Cecelja; Benyu Jiang; Lisa Bevan; Michelle Frost; Tim D. Spector; Phil Chowienczyk

Objectives Our aim was to examine the relationship of arterial stiffness to measures of atherosclerosis, arterial calcification, and bone mineral density (BMD); the heritability of these measures; and the degree to which they are explained by common genetic influences. Background Arterial stiffening relates to arterial calcification, but this association could result from coexistent atherosclerosis. A reciprocal relationship between arterial stiffening/calcification and BMD could explain the association between cardiovascular morbidity and osteoporosis. Methods We examined, in 900 women from the Twins UK cohort, the relationship of carotid-femoral pulse wave velocity (cfPWV) to measures of atherosclerosis (carotid intima-media thickening; carotid/femoral plaque), calcification (calcified plaque [CP]; aortic calcification by computed tomography, performed in subsample of 40 age-matched women with low and high cfPWV), and BMD. Results The cfPWV independently correlated with CP but not with intima-media thickness or noncalcified plaque. Total aortic calcium, determined by computed tomography, was significantly greater in subjects with high cfPWV (median Agatston score 450.4 compared with 63.2 arbitrary units in subjects with low cfPWV, p = 0.001). There was no independent association between cfPWV and BMD. Adjusted heritability estimates of cfPWV and CP were 0.38 (95% confidence interval: 0.19 to 0.59) and 0.61 (95% confidence interval: 0.04 to 0.83), respectively. Shared genetic factors accounted for 92% of the observed correlation (0.38) between cfPWV and CP. Conclusions These results suggest that the association between increased arterial stiffness and the propensity of the arterial wall to calcify is explained by a common genetic etiology and is independent of noncalcified atheromatous plaque and independent of BMD.


Circulation | 2012

Synergistic Adaptations to Exercise in the Systemic and Coronary Circulations That Underlie the Warm-Up Angina Phenomenon

Tim Lockie; M. Cristina Rolandi; Antoine Guilcher; Divaka Perera; Kalpa De Silva; Rupert Williams; Kaleab N. Asrress; Kiran Patel; Sven Plein; Phil Chowienczyk; Maria Siebes; Simon Redwood; Michael Marber

Background— The mechanisms of reduced angina on second exertion in patients with coronary arterial disease, also known as the warm-up angina phenomenon, are poorly understood. Adaptations within the coronary and systemic circulations have been suggested but never demonstrated in vivo. In this study we measured central and coronary hemodynamics during serial exercise. Methods and Results— Sixteen patients (15 male, 61±4.3 years) with a positive exercise ECG and exertional angina completed the protocol. During cardiac catheterization via radial access, they performed 2 consecutive exertions (Ex1, Ex2) using a supine cycle ergometer. Throughout exertions, distal coronary pressure and flow velocity were recorded in the culprit vessel using a dual sensor wire while central aortic pressure was recorded using a second wire. Patients achieved a similar workload in Ex2 but with less ischemia than in Ex1 (P<0.01). A 33% decline in aortic pressure augmentation in Ex2 (P<0.0001) coincided with a reduction in tension time index, a major determinant of left ventricular afterload (P<0.001). Coronary stenosis resistance was unchanged. A sustained reduction in coronary microvascular resistance resulted in augmented coronary flow velocity on second exertion (both P<0.001). These changes were accompanied by a 21% increase in the energy of the early diastolic coronary backward-traveling expansion, or suction, wave on second exercise (P<0.05), indicating improved microvascular conductance and enhanced left ventricular relaxation. Conclusions— On repeat exercise in patients with effort angina, synergistic changes in the systemic and coronary circulations combine to improve vascular–ventricular coupling and enhance myocardial perfusion, thereby potentially contributing to the warm-up angina phenomenon.


BMC Cardiovascular Disorders | 2013

The relationship between DXA-based and anthropometric measures of visceral fat and morbidity in women.

Kenan Direk; Marina Cecelja; William Astle; Phil Chowienczyk; Tim D. Spector; Mario Falchi; Toby Andrew

BackgroundExcess accumulation of visceral fat is a prominent risk factor for cardiovascular and metabolic morbidity. While computed tomography (CT) is the gold standard to measure visceral adiposity, this is often not possible for large studies - thus valid, but less expensive and intrusive proxy measures of visceral fat are required such as dual-energy X-ray absorptiometry (DXA). Study aims were to a) identify a valid DXA-based measure of visceral adipose tissue (VAT), b) estimate VAT heritability and c) assess visceral fat association with morbidity in relation to body fat distribution.MethodsA validation sample of 54 females measured for detailed body fat composition - assessed using CT, DXA and anthropometry – was used to evaluate previously published predictive models of CT-measured visceral fat. Based upon a validated model, we realised an out-of-sample estimate of abdominal VAT area for a study sample of 3457 female volunteer twins and estimated VAT area heritability using a classical twin study design. Regression and residuals analyses were used to assess the relationship between adiposity and morbidity.ResultsPublished models applied to the validation sample explained >80% of the variance in CT-measured visceral fat. While CT visceral fat was best estimated using a linear regression for waist circumference, CT body cavity area and total abdominal fat (R2 = 0.91), anthropometric measures alone predicted VAT almost equally well (CT body cavity area and waist circumference, R2 = 0.86). Narrow sense VAT area heritability for the study sample was estimated to be 58% (95% CI: 51-66%) with a shared familial component of 24% (17-30%). VAT area is strongly associated with type 2 diabetes (T2D), hypertension (HT), subclinical atherosclerosis and liver function tests. In particular, VAT area is associated with T2D, HT and liver function (alanine transaminase) independent of DXA total abdominal fat and body mass index (BMI).ConclusionsDXA and anthropometric measures can be utilised to derive estimates of visceral fat as a reliable alternative to CT. Visceral fat is heritable and appears to mediate the association between body adiposity and morbidity. This observation is consistent with hypotheses that suggest excess visceral adiposity is causally related to cardiovascular and metabolic disease.


Circulation | 2015

Paradoxical Normoxia-Dependent Selective Actions of Inorganic Nitrite in Human Muscular Conduit Arteries and Related Selective Actions on Central Blood Pressures

Sami Omar; Henry Fok; Katharina Tilgner; Ashok Nair; Joanne Hunt; Benyu Jiang; Paul D. Taylor; Phil Chowienczyk; Andrew J. Webb

Background— Inorganic nitrite dilates small resistance arterioles via hypoxia-facilitated reduction to vasodilating nitric oxide. The effects of nitrite in human conduit arteries have not been investigated. In contrast to nitrite, organic nitrates are established selective dilators of conduit arteries. Methods and Results— We examined the effects of local and systemic administration of sodium nitrite on the radial artery (a muscular conduit artery), forearm resistance vessels (forearm blood flow), and systemic hemodynamics in healthy male volunteers (n=43). Intrabrachial sodium nitrite (8.7 &mgr;mol/min) increased radial artery diameter by a median of 28.0% (25th and 75th percentiles, 25.7% and 40.1%; P<0.001). Nitrite (0.087–87 &mgr;mol/min) displayed conduit artery selectivity similar to that of glyceryl trinitrate (0.013–4.4 nmol/min) over resistance arterioles. Nitrite dose-dependently increased local cGMP production at the dose of 2.6 &mgr;mol/min by 1.1 pmol·min−1·100 mL−1 tissue (95% confidence interval, 0.5–1.8). Nitrite-induced radial artery dilation was enhanced by administration of acetazolamide (oral or intra-arterial) and oral raloxifene (P=0.0248, P<0.0001, and P=0.0006, respectively) but was inhibited under hypoxia (P<0.0001) and hyperoxia (P=0.0006) compared with normoxia. Systemic intravenous administration of sodium nitrite (8.7 &mgr;mol/min) dilated the radial artery by 10.7% (95% confidence interval, 6.8–14.7) and reduced central systolic blood pressure by 11.6 mm Hg (95% confidence interval, 2.4–20.7), augmentation index, and pulse wave velocity without changing peripheral blood pressure. Conclusions— Nitrite selectively dilates conduit arteries at supraphysiological and near-physiological concentrations via a normoxia-dependent mechanism that is associated with cGMP production and is enhanced by acetazolamide and raloxifene. The selective central blood pressure–lowering effects of nitrite have therapeutic potential to reduce cardiovascular events.


Hypertension | 2014

Augmentation pressure is influenced by ventricular contractility/relaxation dynamics: novel mechanism of reduction of pulse pressure by nitrates.

Henry Fok; Antoine Guilcher; Ye Li; Sally Brett; Ajay M. Shah; Brian Clapp; Phil Chowienczyk

Augmentation pressure (AP), the increment in aortic pressure above its first systolic shoulder, is thought to be determined mainly by pressure wave reflection but could be influenced by ventricular ejection characteristics. We sought to determine the mechanism by which AP is selectively reduced by nitroglycerin (NTG). Simultaneous measurements of aortic pressure and flow were made at the time of cardiac catheterization in 30 subjects (11 women; age, 61±13 years [mean±SD]) to perform wave intensity analysis and calculate forward and backward components of AP generated by the ventricle and arterial tree, respectively. Measurements were made at baseline and after NTG given systemically (800 &mgr;g sublingually, n=20) and locally by intracoronary infusion (1 &mgr;g/min; n=10). Systemic NTG had no significant effect on first shoulder pressure but reduced augmentation (and central pulse pressure) by 12.8±3.1 mm Hg (P<0.0001). This resulted from a reduction in forward and backward wave components of AP by 7.0±2.4 and 5.8±1.3 mm Hg, respectively (each P<0.02). NTG had no significant effect on the ratio of amplitudes of either backward/forward waves or backward/forward compression wave energies, suggesting that effects on the backward wave were largely secondary to those on the forward wave. Time to the forward expansion wave was reduced (P<0.05). Intracoronary NTG decreased AP by 8.3±3.6 mm Hg (P<0.05) with no significant effect on the backward wave. NTG reduces AP and central pulse pressure by a mechanism that is, at least in part, independent of arterial reflections and relates to ventricular contraction/relaxation dynamics with enhanced myocardial relaxation.Augmentation pressure (AP), the increment in aortic pressure above its first systolic shoulder, is thought to be determined mainly by pressure wave reflection but could be influenced by ventricular ejection characteristics. We sought to determine the mechanism by which AP is selectively reduced by nitroglycerin (NTG). Simultaneous measurements of aortic pressure and flow were made at the time of cardiac catheterization in 30 subjects (11 women; age, 61±13 years [mean±SD]) to perform wave intensity analysis and calculate forward and backward components of AP generated by the ventricle and arterial tree, respectively. Measurements were made at baseline and after NTG given systemically (800 μg sublingually, n=20) and locally by intracoronary infusion (1 μg/min; n=10). Systemic NTG had no significant effect on first shoulder pressure but reduced augmentation (and central pulse pressure) by 12.8±3.1 mm Hg ( P <0.0001). This resulted from a reduction in forward and backward wave components of AP by 7.0±2.4 and 5.8±1.3 mm Hg, respectively (each P <0.02). NTG had no significant effect on the ratio of amplitudes of either backward/forward waves or backward/forward compression wave energies, suggesting that effects on the backward wave were largely secondary to those on the forward wave. Time to the forward expansion wave was reduced ( P <0.05). Intracoronary NTG decreased AP by 8.3±3.6 mm Hg ( P <0.05) with no significant effect on the backward wave. NTG reduces AP and central pulse pressure by a mechanism that is, at least in part, independent of arterial reflections and relates to ventricular contraction/relaxation dynamics with enhanced myocardial relaxation. # Novelty and Significance {#article-title-30}


Jacc-cardiovascular Imaging | 2014

Coronary Vessel Wall Contrast Enhancement Imaging as a Potential Direct Marker of Coronary Involvement Integration of Findings From CAD and SLE Patients

Niharika Varma; Rocio Hinojar; David D’Cruz; Eduardo Arroyo Ucar; Andreas Indermuehle; Sarah A Peel; Gerald Greil; Nicholas Gaddum; Phil Chowienczyk; Eike Nagel; René M. Botnar; Valentina O. Puntmann

Objectives This study investigated the feasibility of visual and quantitative assessment of coronary vessel wall contrast enhancement (CE) for detection of symptomatic atherosclerotic coronary artery disease (CAD) and subclinical coronary vasculitis in autoimmune inflammatory disease (systemic lupus erythematosus [SLE]), as well as the association with aortic stiffness, an established marker of risk. Background Coronary CE by cardiac magnetic resonance (CMR) is a novel noninvasive approach to visualize gadolinium contrast uptake within the coronary artery vessel wall. Methods A total of 75 subjects (CAD: n = 25; SLE: n = 27; control: n = 23) underwent CMR imaging using a 3-T clinical scanner. Coronary arteries were visualized by a T2-prepared steady state free precession technique. Coronary wall CE was visualized using inversion-recovery T1 weighted gradient echo sequence 40 min after administration of 0.2 mmol/kg gadobutrol. Proximal coronary segments were visually examined for distribution of CE and quantified for contrast-to-noise ratio (CNR) and total CE area. Results Coronary CE was prevalent in patients (93%, n = 42) with a diffuse pattern for SLE and a patchy/regional distribution in CAD patients. Compared with control subjects, CNR values and total CE area in patients with CAD and SLE were significantly higher (mean CNR: 3.9 ± 2.5 vs. 6.9 ± 2.5 vs. 6.8 ± 2.0, respectively; p < 0.001; total CE area: median 0.8 [interquartile range (IQR): 0.6 to 1.2] vs. 3.2 [IQR: 2.6 to 4.0] vs. 3.3 [IQR: 1.9 to 4.5], respectively; p < 0.001). Both measures were positively associated with aortic stiffness (CNR: r = 0.61, p < 0.01; total CE area: 0.36, p = 0.03), hypercholesterolemia (r = 0.68, p < 0.001; r = 0.61, p < 0.001) and hypertension (r = 0.40, p < 0.01; r = 0.32, p < 0.05). Conclusions We demonstrate that quantification of coronary CE by CNR and total CE area is feasible for detection of subclinical and clinical uptake of gadolinium within the coronary vessel wall. Coronary vessel wall CE may become an instrumental novel direct marker of vessel wall injury and remodeling in subpopulations at risk.

Collaboration


Dive into the Phil Chowienczyk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henry Fok

King's College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ye Li

Brunel University London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge