Phil Lacroute
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Phil Lacroute.
Nature | 2012
Mark Gerstein; Anshul Kundaje; Manoj Hariharan; Stephen G. Landt; Koon Kiu Yan; Chao Cheng; Xinmeng Jasmine Mu; Ekta Khurana; Joel Rozowsky; Roger P. Alexander; Renqiang Min; Pedro Alves; Alexej Abyzov; Nick Addleman; Nitin Bhardwaj; Alan P. Boyle; Philip Cayting; Alexandra Charos; David Chen; Yong Cheng; Declan Clarke; Catharine L. Eastman; Ghia Euskirchen; Seth Frietze; Yao Fu; Jason Gertz; Fabian Grubert; Arif Harmanci; Preti Jain; Maya Kasowski
Transcription factors bind in a combinatorial fashion to specify the on-and-off states of genes; the ensemble of these binding events forms a regulatory network, constituting the wiring diagram for a cell. To examine the principles of the human transcriptional regulatory network, we determined the genomic binding information of 119 transcription-related factors in over 450 distinct experiments. We found the combinatorial, co-association of transcription factors to be highly context specific: distinct combinations of factors bind at specific genomic locations. In particular, there are significant differences in the binding proximal and distal to genes. We organized all the transcription factor binding into a hierarchy and integrated it with other genomic information (for example, microRNA regulation), forming a dense meta-network. Factors at different levels have different properties; for instance, top-level transcription factors more strongly influence expression and middle-level ones co-regulate targets to mitigate information-flow bottlenecks. Moreover, these co-regulations give rise to many enriched network motifs (for example, noise-buffering feed-forward loops). Finally, more connected network components are under stronger selection and exhibit a greater degree of allele-specific activity (that is, differential binding to the two parental alleles). The regulatory information obtained in this study will be crucial for interpreting personal genome sequences and understanding basic principles of human biology and disease.
Cell | 2012
Rui Chen; George Mias; Jennifer Li-Pook-Than; Lihua Jiang; Hugo Y. K. Lam; Rong Chen; Elana Miriami; Konrad J. Karczewski; Manoj Hariharan; Frederick E. Dewey; Yong Cheng; Michael J. Clark; Hogune Im; Lukas Habegger; Suganthi Balasubramanian; Maeve O'Huallachain; Joel T. Dudley; Sara Hillenmeyer; Rajini Haraksingh; Donald Sharon; Ghia Euskirchen; Phil Lacroute; Keith Bettinger; Alan P. Boyle; Maya Kasowski; Fabian Grubert; Scott Seki; Marco Garcia; Michelle Whirl-Carrillo; Mercedes Gallardo
Personalized medicine is expected to benefit from combining genomic information with regular monitoring of physiological states by multiple high-throughput methods. Here, we present an integrative personal omics profile (iPOP), an analysis that combines genomic, transcriptomic, proteomic, metabolomic, and autoantibody profiles from a single individual over a 14 month period. Our iPOP analysis revealed various medical risks, including type 2 diabetes. It also uncovered extensive, dynamic changes in diverse molecular components and biological pathways across healthy and diseased conditions. Extremely high-coverage genomic and transcriptomic data, which provide the basis of our iPOP, revealed extensive heteroallelic changes during healthy and diseased states and an unexpected RNA editing mechanism. This study demonstrates that longitudinal iPOP can be used to interpret healthy and diseased states by connecting genomic information with additional dynamic omics activity.
PLOS Computational Biology | 2009
Stephen M. Rumble; Phil Lacroute; Adrian V. Dalca; Marc Fiume; Arend Sidow; Michael Brudno
The development of Next Generation Sequencing technologies, capable of sequencing hundreds of millions of short reads (25–70 bp each) in a single run, is opening the door to population genomic studies of non-model species. In this paper we present SHRiMP - the SHort Read Mapping Package: a set of algorithms and methods to map short reads to a genome, even in the presence of a large amount of polymorphism. Our method is based upon a fast read mapping technique, separate thorough alignment methods for regular letter-space as well as AB SOLiD (color-space) reads, and a statistical model for false positive hits. We use SHRiMP to map reads from a newly sequenced Ciona savignyi individual to the reference genome. We demonstrate that SHRiMP can accurately map reads to this highly polymorphic genome, while confirming high heterozygosity of C. savignyi in this second individual. SHRiMP is freely available at http://compbio.cs.toronto.edu/shrimp.
PLOS ONE | 2010
Andrew H. Beck; Ziming Weng; Daniela M. Witten; Shirley Zhu; Joseph W. Foley; Phil Lacroute; Cheryl L. Smith; Robert Tibshirani; Matt van de Rijn; Arend Sidow; Robert B. West
Gene expression microarrays are the most widely used technique for genome-wide expression profiling. However, microarrays do not perform well on formalin fixed paraffin embedded tissue (FFPET). Consequently, microarrays cannot be effectively utilized to perform gene expression profiling on the vast majority of archival tumor samples. To address this limitation of gene expression microarrays, we designed a novel procedure (3′-end sequencing for expression quantification (3SEQ)) for gene expression profiling from FFPET using next-generation sequencing. We performed gene expression profiling by 3SEQ and microarray on both frozen tissue and FFPET from two soft tissue tumors (desmoid type fibromatosis (DTF) and solitary fibrous tumor (SFT)) (total n = 23 samples, which were each profiled by at least one of the four platform-tissue preparation combinations). Analysis of 3SEQ data revealed many genes differentially expressed between the tumor types (FDR<0.01) on both the frozen tissue (∼9.6K genes) and FFPET (∼8.1K genes). Analysis of microarray data from frozen tissue revealed fewer differentially expressed genes (∼4.64K), and analysis of microarray data on FFPET revealed very few (69) differentially expressed genes. Functional gene set analysis of 3SEQ data from both frozen tissue and FFPET identified biological pathways known to be important in DTF and SFT pathogenesis and suggested several additional candidate oncogenic pathways in these tumors. These findings demonstrate that 3SEQ is an effective technique for gene expression profiling from archival tumor samples and may facilitate significant advances in translational cancer research.
Nature Biotechnology | 2012
Hugo Y. K. Lam; Cuiping Pan; Michael J. Clark; Phil Lacroute; Rui Chen; Rajini Haraksingh; Maeve O'Huallachain; Mark Gerstein; Jeffrey M. Kidd; Carlos Bustamante; Michael Snyder
volume 30 number 3 march 2012 nature biotechnology Liege, Belgium. 31The Babraham Institute, Cambridge, UK. 32Genomatix Software GmbH, Munich, Germany. 33Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland. 34Christian-Albrechts-Universitaet Zu Kiel, Kiel, Germany. 35Cellzome AG, Heidelberg, Germany. 36Institut National de la Sante et de la Recherche Medicale, Marseille, France. 37Weizmann Institute of Science, Rehovot, Israel. 38Barcelona Supercomputing Center, Barcelona, Spain. 39Centro Nacional de Investigaciones Oncologicas, Madrid, Spain. 40University Medical Centre Groningen, Groningen, The Netherlands. 41University of Saarland, Saarbruecken, Germany. 42Oxford Nanopore Technologies Ltd., Oxford, UK. e-mail: [email protected]