Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Phil Murray is active.

Publication


Featured researches published by Phil Murray.


Monthly Notices of the Royal Astronomical Society | 2008

Galaxy Zoo: morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey

Chris J. Lintott; Kevin Schawinski; Anže Slosar; Kate Land; Steven P. Bamford; Daniel Thomas; M. Jordan Raddick; Robert C. Nichol; Alexander S. Szalay; Dan Andreescu; Phil Murray; Jan Vandenberg

In order to understand the formation and subsequent evolution of galaxies one must first distinguish between the two main morphological classes of massive systems: spirals and early-type systems. This paper introduces a project, Galaxy Zoo, which provides visual morphological classifications for nearly one million galaxies, extracted from the Sloan Digital Sky Survey (SDSS). This achievement was made possible by inviting the general public to visually inspect and classify these galaxies via the internet. The project has obtained more than 4 × 107 individual classifications made by ∼105 participants. We discuss the motivation and strategy for this project, and detail how the classifications were performed and processed. We find that Galaxy Zoo results are consistent with those for subsets of SDSS galaxies classified by professional astronomers, thus demonstrating that our data provide a robust morphological catalogue. Obtaining morphologies by direct visual inspection avoids introducing biases associated with proxies for morphology such as colour, concentration or structural parameters. In addition, this catalogue can be used to directly compare SDSS morphologies with older data sets. The colour–magnitude diagrams for each morphological class are shown, and we illustrate how these distributions differ from those inferred using colour alone as a proxy for morphology.


Monthly Notices of the Royal Astronomical Society | 2009

Galaxy Zoo: the dependence of morphology and colour on environment

Steven P. Bamford; Robert C. Nichol; Ivan K. Baldry; Kate Land; Chris Lintott; Kevin Schawinski; Anze Slosar; Alexander S. Szalay; Daniel Thomas; Mehri Torki; Dan Andreescu; Edward M. Edmondson; Christopher J. Miller; Phil Murray; M. Jordan Raddick; Jan Vandenberg

We analyse the relationships between galaxy morphology, colour, environment and stellar mass using data for over 105 objects from Galaxy Zoo, the largest sample of visually classified morphologies yet compiled. We conclusively show that colour and morphology fractions are very different functions of environment. Both colour and morphology are sensitive to stellar mass. However, at fixed stellar mass, while colour is also highly sensitive to environment, morphology displays much weaker environmental trends. Only a small part of both the morphology–density and colour–density relations can be attributed to the variation in the stellar-mass function with environment. Galaxies with high stellar masses are mostly red in all environments and irrespective of their morphology. Low stellar-mass galaxies are mostly blue in low-density environments, but mostly red in high-density environments, again irrespective of their morphology. While galaxies with early-type morphology do always have higher red fractions, this is subdominant compared to the dependence of red fraction on stellar mass and environment. The colour–density relation is primarily driven by variations in colour fractions at fixed morphology, in particular the fraction of spiral galaxies that have red colours, and especially at low stellar masses. We demonstrate that our red spirals primarily include galaxies with true spiral morphology, and that they constitute an additional population to the S0 galaxies considered by previous studies. We clearly show there is an environmental dependence for colour beyond that for morphology. The environmental transformation of galaxies from blue to red must occur on significantly shorter time-scales than the transformation from spiral to early-type. We also present many of our results as functions of the distance to the nearest galaxy group. This confirms that the environmental trends we present are not specific to the manner in which environment is quantified, but nevertheless provides plain evidence for an environmental process at work in groups. However, the properties of group members show little dependence on the total mass of the group they inhabit, at least for group masses ≳1013M⊙. Before using the Galaxy Zoo morphologies to produce the above results, we first quantify a luminosity-, size- and redshift-dependent classification bias that affects this data set, and probably most other studies of galaxy population morphology. A correction for this bias is derived and applied to produce a sample of galaxies with reliable morphological-type likelihoods, on which we base our analysis.


Monthly Notices of the Royal Astronomical Society | 2011

Galaxy Zoo 1: data release of morphological classifications for nearly 900 000 galaxies

Chris J. Lintott; Kevin Schawinski; Steven P. Bamford; Anze Slosar; Kate Land; Daniel Thomas; Edward M. Edmondson; Karen L. Masters; Robert C. Nichol; M. Jordan Raddick; Alexander S. Szalay; Dan Andreescu; Phil Murray; Jan Vandenberg

Morphology is a powerful indicator of a galaxy’s dynamical and merger history. It is strongly correlated with many physical parameters, including mass, star formation history and the distribution of mass. The Galaxy Zoo project collected simple morphological classifications of nearly 900xa0000 galaxies drawn from the Sloan Digital Sky Survey, contributed by hundreds of thousands of volunteers. This large number of classifications allows us to exclude classifier error, and measure the influence of subtle biases inherent in morphological classification. This paper presents the data collected by the project, alongside measures of classification accuracy and bias. The data are now publicly available and full catalogues can be downloaded in electronic format from http://data.galaxyzoo.org.


Astronomy Education Review | 2010

Galaxy Zoo: Exploring the Motivations of Citizen Science Volunteers.

M. Jordan Raddick; Georgia Bracey; Chris Lintott; Phil Murray; Kevin Schawinski; Alexander S. Szalay; Jan Vandenberg

The Galaxy Zoo citizen science website invites anyone with an Internet connection to participate in research by classifying galaxies from the Sloan Digital Sky Survey. As of April 2009, more than 200,000 volunteers had made more than 100 million galaxy classifications. In this paper, we present results of a pilot study into the motivations and demographics of Galaxy Zoo volunteers, and define a technique to determine motivations from free responses that can be used in larger multiple-choice surveys with similar populations. Our categories form the basis for a future survey, with the goal of determining the prevalence of each motivation.


Monthly Notices of the Royal Astronomical Society | 2009

Galaxy Zoo Green Peas: discovery of a class of compact extremely star-forming galaxies

Carolin N. Cardamone; Kevin Schawinski; Marc Sarzi; Steven P. Bamford; Nicola Bennert; Claudia M. Urry; Chris Lintott; William C. Keel; John K. Parejko; Robert C. Nichol; Daniel Thomas; Dan Andreescu; Phil Murray; M. Jordan Raddick; Anze Slosar; Alexander S. Szalay; Jan Vandenberg

We investigate a class of rapidly growing emission line galaxies, known as “Green Peas,” first noted by volunteers in the Galaxy Zoo project because of their peculiar bright green colour and small size, unresolved in SDSS imaging. Their appearance is due to very strong optical emission lines, namely [O III] �5007 ˚ A, with an unusually large equivalent width of up to �1000 ˚ A. We discuss a well-defined sample of 251 colour-selected ob jects, most of which are strongly star forming, although there are some AGN interlopers including 8 newly discovered Narrow Line Seyfert 1 galaxies. The star-forming Peas are low mass galaxies (M� 10 8.5 10 10 M⊙) with high star formation rates (� 10 M⊙yr −1 ), low metallicities (log[O/H] + 12 �8.7) and low reddening (E(B V) 6 0.25) and they reside in low density environments. They have some of the highest specific star for mation rates (up to � 10 −8 yr −1 ) seen in the local Universe, yielding doubling times for their stellar mass of hundreds of Myrs. The few star-forming Peas with HST imaging appear to have several clumps of bright star-forming regions and low surface density features that may indicate recent or ongoing mergers. The Peas are similar in size, mass, luminosity and metallicity to Luminous Blue Compact Galaxies. They are also similar to high redshift UV-luminous galaxies, e.g., Lymanbreak galaxies and Lyman-� emitters, and therefore provide a local laboratory with which to study the extreme star formation processes that occur in high-redshift galaxies. Studying starbursting galaxies as a function of redshift is essential to u nderstanding the build up of stellar mass in the Universe.


Monthly Notices of the Royal Astronomical Society | 2009

Galaxy Zoo: disentangling the environmental dependence of morphology and colour

Ramin A. Skibba; Steven P. Bamford; Robert C. Nichol; Chris Lintott; Dan Andreescu; Edward M. Edmondson; Phil Murray; M. Jordan Raddick; Kevin Schawinski; Anÿze Slosar; Alexander S. Szalay; Daniel Thomas; Jan Vandenberg

We analyze the environmental dependence of galaxy morphology and colour with two-point clustering statistics, using data from the Galaxy Zoo, the largest sample of visually classified morphologies yet compiled, extracted from the Sloan Digital Sky Survey. We present two-point correlation functions of spiral and early-type galaxies, and we quantify the correlation between morphology and environment with marked correlation functions. These yield clear and precise environmental trends across a wide range of scales, analogous to similar measurements with galaxy colours, indicating that the Galaxy Zoo classifications themselves are very precise. We measure morphology marked correlation functions at fixed colour and find that they are relatively weak, with the only residual correlation being that of red galaxies at small scales, indicating a morphology gradient within haloes for red galaxies. At fixed morphology, we find that the environmental dependence of colour remains strong, and these correlations remain for fixed morphology and luminosity. An implication of this is that much of the morphology–density relation is due to the relation between colour and density. Our results also have implications for galaxy evolution: the morphological transformation of galaxies is usually accompanied by a colour transformation, but not necessarily vice versa. A spiral galaxy may move onto the red sequence of the colour-magnitude diagram without quickly becoming an early-type. We analyze the significant population of red spiral galaxies, and present evidence that they tend to be located in moderately dense environments and are often satellite galaxies in the outskirts of haloes. Finally, we combine our results to argue that central and satellite galaxies tend to follow different evolutionary paths.


Monthly Notices of the Royal Astronomical Society | 2010

Galaxy Zoo: Passive Red Spirals .

Karen L. Masters; Moein Mosleh; A. Kathy Romer; Robert C. Nichol; Steven P. Bamford; Kevin Schawinski; Chris Lintott; Dan Andreescu; Heather Campbell; Ben Crowcroft; Isabelle Doyle; Edward M. Edmondson; Phil Murray; M. Jordan Raddick; Anÿze Slosar; Alexander S. Szalay; Jan Vandenberg

We study the spectroscopic properties and environments of red (or passive) spiral galaxies found by the Galaxy Zoo project. By carefully selecting face-on disc-dominated spirals, we construct a sample of truly passive discs (i.e. they are not dust reddened spirals, nor are they dominated by old stellar populations in a bulge). As such, our red spirals represent an interesting set of possible transition objects between normal blue spiral galaxies and red early types, making up ∼6 per cent of late-type spirals. We use optical images and spectra from Sloan Digital Sky Survey to investigate the physical processes which could have turned these objects red without disturbing their morphology. We find red spirals preferentially in intermediate density regimes. However, there are no obvious correlations between red spiral properties and environment suggesting that environment alone is not sufficient to determine whether a galaxy will become a red spiral. Red spirals are a very small fraction of all spirals at low masses (M★ < 1010 M⊙), but are a significant fraction of the spiral population at large stellar masses showing that massive galaxies are red independent of morphology. We confirm that as expected, red spirals have older stellar populations and less recent star formation than the main spiral population. While the presence of spiral arms suggests that a major star formation could not have ceased a long ago (not more than a few Gyr), we show that these are also not recent post-starburst objects (having had no significant star formation in the last Gyr), so star formation must have ceased gradually. Intriguingly, red spirals are roughly four times as likely than the normal spiral population to host optically identified Seyfert/low-ionization nuclear emission region (LINER; at a given stellar mass and even accounting for low-luminosity lines hidden by star formation), with most of the difference coming from the objects with LINER-like emission. We also find a curiously large optical bar fraction in the red spirals (70 ± 5 verses 27 ± 5 per cent in blue spirals) suggesting that the cessation of star formation and bar instabilities in spirals are strongly correlated. We conclude by discussing the possible origins of these red spirals. We suggest that they may represent the very oldest spiral galaxies which have already used up their reserves of gas – probably aided by strangulation or starvation, and perhaps also by the effect of bar instabilities moving material around in the disc. We provide an online table listing our full sample of red spirals along with the normal/blue spirals used for comparison.


The Astrophysical Journal | 2010

Galaxy Zoo: the fundamentally different co-evolution of supermassive black holes and their early- and late-type host galaxies

Kevin Schawinski; C. Megan Urry; Shanil N. Virani; Paolo S. Coppi; Steven P. Bamford; Ezequiel Treister; Chris Lintott; Marc Sarzi; William C. Keel; Sugata Kaviraj; Carolin N. Cardamone; Karen L. Masters; Nicholas P. Ross; Dan Andreescu; Phil Murray; Robert C. Nichol; M. Jordan Raddick; Anze Slosar; Alexander S. Szalay; Daniel Thomas; Jan Vandenberg

We use data from the Sloan Digital Sky Survey and visual classifications of morphology from the Galaxy Zoo project to study black hole growth in the nearby universe (z 1040 erg s–1 in early- and late-type galaxies is fundamentally different. AGN host galaxies as a population have a broad range of stellar masses (1010-1011 M ☉), reside in the green valley of the color-mass diagram and their central black holes have median masses around 106.5 M ☉. However, by comparing early- and late-type AGN host galaxies to their non-active counterparts, we find several key differences: in early-type galaxies, it is preferentially the galaxies with the least massive black holes that are growing, while in late-type galaxies, it is preferentially the most massive black holes that are growing. The duty cycle of AGNs in early-type galaxies is strongly peaked in the green valley below the low-mass end (1010 M ☉) of the red sequence at stellar masses where there is a steady supply of blue cloud progenitors. The duty cycle of AGNs in late-type galaxies on the other hand peaks in massive (1011 M ☉) green and red late-types which generally do not have a corresponding blue cloud population of similar mass. At high-Eddington ratios (L/L Edd>0.1), the only population with a substantial fraction of AGNs are the low-mass green valley early-type galaxies. Finally, the Milky Way likely resides in the sweet spot on the color-mass diagram where the AGN duty cycle of late-type galaxies is highest. We discuss the implications of these results for our understanding of the role of AGNs in the evolution of galaxies.


Monthly Notices of the Royal Astronomical Society | 2009

Galaxy Zoo: ‘Hanny's Voorwerp’, a quasar light echo?

Chris Lintott; Kevin Schawinski; William C. Keel; Hanny van Arkel; Nicola Bennert; Edward M. Edmondson; Daniel Thomas; Dan Smith; Peter D. Herbert; M. J. Jarvis; Shanil N. Virani; Dan Andreescu; Steven P. Bamford; Kate Land; Phil Murray; Robert C. Nichol; M. Jordan Raddick; Anže Slosar; Alexander S. Szalay; Jan Vandenberg

We report the discovery of an unusual object near the spiral galaxy IC 2497, discovered by visual inspection of the Sloan Digital Sky Survey (SDSS) as part of the Galaxy Zoo project. The object, known as Hanny’s Voorwerp, is bright in the SDSS g band due to unusually strong [O III]4959, 5007 emission lines. We present the results of the first targeted observations of the object in the optical, ultraviolet and X-ray, which show that the object contains highly ionized gas. Although the line ratios are similar to extended emission-line regions near luminous active galactic nucleus (AGN), the source of this ionization is not apparent. The emission-line properties, and lack of X-ray emission from IC 2497, suggest either a highly obscured AGN with a novel geometry arranged to allow photoionization of the object but not the galaxy’s own circumnuclear gas, or, as we argue, the first detection of a quasar light echo. In this case, either the luminosity of the central source has decreased dramatically or else the obscuration in the system has increased within 10 5 yr. This object may thus represent the first direct probe


Monthly Notices of the Royal Astronomical Society | 2009

Galaxy Zoo: a sample of blue early-type galaxies at low redshift

Kevin Schawinski; Chris Lintott; Daniel Thomas; Marc Sarzi; Dan Andreescu; Steven P. Bamford; Sugata Kaviraj; Sadegh Khochfar; Kate Land; Phil Murray; Robert C. Nichol; M. Jordan Raddick; Anze Slosar; Alexander S. Szalay; Jan Vandenberg; Sukyoung K. Yi

‘The definitive version is available at: www3.interscience.wiley.com . Copyright Blackwell / Royal Astronomical Society. DOI: 10.1111/j.1365-2966.2009.14793.x

Collaboration


Dive into the Phil Murray's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Vandenberg

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anze Slosar

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge