Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philip B. Russell is active.

Publication


Featured researches published by Philip B. Russell.


Journal of the Atmospheric Sciences | 2002

Wavelength Dependence of the Absorption of Black Carbon Particles: Predictions and Results from the TARFOX Experiment and Implications for the Aerosol Single Scattering Albedo

Robert Bergström; Philip B. Russell; Phillip Hignett

Abstract Measurements are presented of the wavelength dependence of the aerosol absorption coefficient taken during the Tropical Aerosol Radiative Forcing Observational Experiment (TARFOX) over the northern Atlantic. The data show an approximate λ−1 variation between 0.40 and 1.0 μm. The theoretical basis of the wavelength variation of the absorption of solar radiation by elemental carbon [or black carbon (BC)] is explored. For a wavelength independent refractive index the small particle absorption limit simplifies to a λ−1 variation in relatively good agreement with the data. This result implies that the refractive indices of BC were relatively constant in this wavelength region, in agreement with much of the data on refractive indices of BC. However, the result does not indicate the magnitude of the refractive indices. The implications of the wavelength dependence of BC absorption for the spectral behavior of the aerosol single scattering albedo are discussed. It is shown that the single scattering albe...


Journal of Geophysical Research | 1997

Chemical apportionment of aerosol column optical depth off the mid‐Atlantic coast of the United States

Dean A. Hegg; J. M. Livingston; Peter V. Hobbs; T. Novakov; Philip B. Russell

Aerosol column optical depths derived from airborne Sun photometer and in situ measurements of aerosol properties in 14 vertical profiles off the mid-Atlantic coast of the United States in June show excellent agreement. Simultaneous measurements of the chemical compositions of the aerosol allows an assessment of the chemical apportionment of the aerosol column optical depths. The optical depths had essentially three chemical components, which, in order of descending average contributions, were condensed water, carbonaceous species, and sulfate. These results do not support the common assumption that sulfate dominates aerosol optical depths in polluted regions.


Bulletin of the American Meteorological Society | 2004

ACE-ASIA Regional Climatic and Atmospheric Chemical Effects of Asian Dust and Pollution

John H. Seinfeld; Gregory R. Carmichael; Richard Arimoto; William C. Conant; Frederick J. Brechtel; T. S. Bates; Thomas A. Cahill; Antony D. Clarke; Sarah J. Doherty; Piotr J. Flatau; Barry J. Huebert; Jiyoung Kim; Krzysztof M. Markowicz; Patricia K. Quinn; Lynn M. Russell; Philip B. Russell; Atsushi Shimizu; Yohei Shinozuka; Chul H. Song; Youhua Tang; Itsushi Uno; Andrew M. Vogelmann; Rodney J. Weber; Jung-Hun Woo; Xiao Y. Zhang

Although continental-scale plumes of Asian dust and pollution reduce the amount of solar radiation reaching the earths surface and perturb the chemistry of the atmosphere, our ability to quantify these effects has been limited by a lack of critical observations, particularly of layers above the surface. Comprehensive surface, airborne, shipboard, and satellite measurements of Asian aerosol chemical composition, size, optical properties, and radiative impacts were performed during the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) study. Measurements within a massive Chinese dust storm at numerous widely spaced sampling locations revealed the highly complex structure of the atmosphere, in which layers of dust, urban pollution, and biomass-burning smoke may be transported long distances as distinct entities or mixed together. The data allow a first-time assessment of the regional climatic and atmospheric chemical effects of a continental-scale mixture of dust and pollution. Our results show that radiative flux reductions during such episodes are sufficient to cause regional climate change.


Journal of Geophysical Research | 1999

Aerosol properties and radiative effects in the United States East Coast haze plume: An overview of the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX)

Philip B. Russell; Peter V. Hobbs; Larry L. Stowe

Aerosol effects on atmospheric radiation are a leading source of uncertainty in predicting climate change. The Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) was designed to reduce this uncertainty by measuring and analyzing aerosol properties and effects on the United States eastern seaboard, where one of the worlds major plumes of urban/industrial haze moves from the continent over the Atlantic Ocean. The TARFOX intensive field campaign was conducted July 10–31, 1996. It included coordinated measurements from four satellites (GOES-8, NOAA-14, ERS-2, Landsat), four aircraft (ER-2, C-130, C-131A, and a modified Cessna), land sites, and ships. A variety of aerosol conditions was sampled, ranging from relatively clean, behind frontal passages, to moderately polluted, with aerosol optical depths exceeding 0.5 at midvisible wavelengths. Gradients of aerosol optical thickness were sampled to aid in separating aerosol effects from other radiative effects and to more tightly constrain closure tests, including those of satellite retrievals. Early results from TARFOX include demonstration of the unexpected importance of carbonaceous compounds and water condensed on aerosol in the United States East Coast haze plume, chemical apportionment of the aerosol optical depth, measurements of aerosol-induced changes in upwelling and downwelling shortwave radiative fluxes, and generally good agreement between measured flux changes and those calculated from measured aerosol properties. This overview presents the TARFOX objectives, rationale, overall experimental approach, and key initial findings as a guide to the more complete results reported in this special section and elsewhere.


Journal of Geophysical Research | 1997

Forcings and chaos in interannual to decadal climate change

James E. Hansen; Makiko Sato; Reto Ruedy; A. Lacis; K. Asamoah; K. Beckford; S. Borenstein; Erik T. Brown; Brian Cairns; Barbara E. Carlson; B. Curran; S. de Castro; Leonard M. Druyan; P. Etwarrow; T. Ferede; M. Fox; Dian J. Gaffen; J. Glascoe; Howard R. Gordon; S. M. Hollandsworth; X. Jiang; Colin A. Johnson; N. Lawrence; Judith Lean; J. Lerner; K. Lo; Jennifer A. Logan; A. Luckett; M. P. McCormick; Richard D. McPeters

We investigate the roles of climate forcings and chaos (unforced variability) in climate change via ensembles of climate simulations in which we add forcings one by one. The experiments suggest that most interannual climate variability in the period 1979–1996 at middle and high latitudes is chaotic. But observed SST anomalies, which themselves are partly forced and partly chaotic, account for much of the climate variability at low latitudes and a small portion of the variability at high latitudes. Both a natural radiative forcing (volcanic aerosols) and an anthropogenic forcing (ozone depletion) leave clear signatures in the simulated climate change that are identified in observations. Pinatubo aerosols warm the stratosphere and cool the surface globally, causing a tendency for regional surface cooling. Ozone depletion cools the lower stratosphere, troposphere and surface, steepening the temperature lapse rate in the troposphere. Solar irradiance effects are small, but our model is inadequate to fully explore this forcing. Well-mixed anthropogenic greenhouse gases cause a large surface wanning that, over the 17 years, approximately offsets cooling by the other three mechanisms. Thus the net calculated effect of all measured radiative forcings is approximately zero surface temperature trend and zero heat storage in the ocean for the period 1979–1996. Finally, in addition to the four measured radiative forcings, we add an initial (1979) disequilibrium forcing of +0.65 W/m2. This forcing yields a global surface warming of about 0.2°C over 1979–1996, close to observations, and measurable heat storage in the ocean. We argue that the results represent evidence of a planetary radiative imbalance of at least 0.5° W/m2; this disequilibrium presumably represents unrealized wanning due to changes of atmospheric composition prior to 1979. One implication of the disequilibrium forcing is an expectation of new record global temperatures in the next few years. The best opportunity for observational confirmation of the disequilibrium is measurement of ocean temperatures adequate to define heat storage.


Applied Optics | 2001

Comparison of Columnar Water-Vapor Measurements from Solar Transmittance Methods

Beat Schmid; Joseph Michalsky; Donald W. Slater; James C. Barnard; Rangasayi N. Halthore; James C. Liljegren; Brent N. Holben; Thomas F. Eck; J. M. Livingston; Philip B. Russell; Thomas Ingold; I. Slutsker

In the fall of 1997 the Atmospheric Radiation Measurement program conducted a study of water-vapor-abundance-measurement at its southern Great Plains site. The large number of instruments included four solar radiometers to measure the columnar water vapor (CWV) by measuring solar transmittance in the 0.94-mum water-vapor absorption band. At first, no attempt was made to standardize our procedures to the same radiative transfer model and its underlying water-vapor spectroscopy. In the second round of comparison we used the same line-by-line code (which includes recently corrected H(2)O spectroscopy) to retrieve CWV from all four solar radiometers, thus decreasing the mean CWV by 8-13%. The remaining spread of 8% is an indication of the other-than-model uncertainties involved in the retrieval.


Journal of Geophysical Research | 2003

An intercomparison of lidar-derived aerosol optical properties with airborne measurements near Tokyo during ACE-Asia

Toshiyuki Murayama; Sarah J. Masonis; J. Redemann; Theodore L. Anderson; Beat Schmid; J. M. Livingston; Philip B. Russell; Barry J. Huebert; S. Howell; Cameron Stuart McNaughton; Antony D. Clarke; Makoto Abo; Atsushi Shimizu; Nobuo Sugimoto; Masanori Yabuki; Hiroaki Kuze; Shunsuke Fukagawa; K. Maxwell-Meier; Rodney J. Weber; D. Orsini; B. W. Blomquist; Alan R. Bandy; Donald C. Thornton

[1] During the ACE-Asia intensive observation period (IOP), an intercomparison experiment with ground-based lidars and aircraft observations was conducted near Tokyo. On 23 April 2001, four Mie backscatter lidars were simultaneously operated in the Tokyo region, while the National Center for Atmospheric Research C-130 aircraft flew a steppedascent profile between the surface and 6 km over Sagami Bay southwest of Tokyo. The C-130 observation package included a tracking Sun photometer and in situ packages measuring aerosol optical properties, aerosol size distribution, aerosol ionic composition, and SO2 concentration. The three polarization lidars suggested that the observed modest concentrations of Asian dust in the free troposphere extended up to an altitude of 8 km. We found a good agreement in the backscattering coefficient at 532 nm among lidars and in situ 180� backscatter nephelometer observations. The intercomparison indicated that the aerosol layer between 1.6 and 3.5 km was a remarkably stable and homogenous in mesoscale. We also found reasonable agreement between the aerosol extinction coefficients (sa � 0.03 km � 1 ) derived from the airborne tracking Sun photometer, in situ optical instruments, and those estimated from the lidars above the planetary boundary layer (PBL). We also found considerable vertical variation of the aerosol depolarization ratio (da) and a negative correlation between da and the backscattering coefficient (da) below 3.5 km. Airborne measurements of size-dependent optical parameters (e.g., the fine mode fraction of scattering) and of aerosol ionic compositions suggests that the mixing ratio of the accumulation-mode and coarse-mode (dust) aerosols was primarily responsible for the observed variation of da. Aerosol observations during the intercomparison period captured the following three types of layers in the atmosphere: a PBL (surface to 1.2–1.5 km) where fine (mainly sulfate) particles with a low da (<10%) dominated; an intermediate layer (between the top of the PBL and 3.5 km) where fine particles and dust particles were moderately externally mixed, giving moderate da; and an upper layer (above � 3.5 km) where dust dominated, giving a high da (30%). A substantial dust layer between 4.5 and 6.5 km was observed just west of Japan by the airborne instruments and found to have a lidar ratio of 50.4 ± 9.4 sr. This agrees well with nighttime Raman lidar measurements made later on this same dust layer as it passed over Tokyo, which found a lidar ratio of 46.5 ± 10.5 sr. INDEX TERMS: 0305 Atmospheric Composition and Structure: Aerosols and particles


Journal of Geophysical Research | 2000

Properties of aerosols aloft relevant to direct radiative forcing off the mid‐Atlantic coast of the United States

W. Seth Hartley; Peter V. Hobbs; John L. Ross; Philip B. Russell; J. M. Livingston

Comparisons are presented of ambient aerosol optical depths (AOD) derived from airborne in situ measurements of aerosol properties and from Sun photometer measurements off the mideastern seaboard of the United States in July 1996. At 450 nm the Sun photometer measurements of AOD were greater than the in situ measurements by, on average, (12±5)%. Possible reasons for this difference are discussed. Comparisons of Angstrom coefficients for the ambient aerosol, based on in situ and Sun photometer measurements, are presented, as well as estimates of the ambient aerosol single-scattering albedo. At a wavelength of 550 nm, the mean value of the ambient single-scattering albedo was (0.95±0.03). Also compared are various optical properties of the dry aerosol derived from airborne in situ measurements with values calculated from a model of the dry aerosol. At a wavelength of 550 nm, measurements and calculations of the total light scattering and light backscattering coefficients for the dry aerosol agree, on average, to within (23±2)% and (8±2)%. The calculated and measured dry aerosol absorption coefficients at 535 nm are in agreement for an assumed value of the mass absorption efficiency for the black carbon content of the dry aerosol of 14 m2 g−1.


Journal of Geophysical Research | 2001

Dependence of aerosol light absorption and single‐scattering albedo on ambient relative humidity for sulfate aerosols with black carbon cores

J. Redemann; Philip B. Russell; Patrick Hamill

Atmospheric aerosols frequently contain hygroscopic sulfate species and black carbon (soot) inclusions. In this paper we report results of a modeling study to determine the change in aerosol absorption due to increases in ambient relative humidity (RH), for three common sulfate species, assuming that the soot mass fraction is present as a single concentric core within each particle. Because of the lack of detailed knowledge about various input parameters to models describing internally mixed aerosol particle optics, we focus on results that were aimed at determining the maximum effect that particle humidification may have on aerosol light absorption. In the wavelength range from 450 to 700 nm, maximum absorption humidification factors (ratio of wet to “dry = 30% RH” absorption) for single aerosol particles are found to be as large as 1.75 when the RH changes from 30 to 99.5%. Upon lesser humidification from 30 to 80% RH, absorption humidification for single particles is only as much as 1.2, even for the most favorable combination of initial (“dry”) soot mass fraction and particle size. Integrated over monomodal lognormal particle size distributions, maximum absorption humidification factors range between 1.07 and 1.15 for humidification from 30 to 80% and between 1.1 and 1.35 for humidification from 30 to 95% RH for all species considered. The largest humidification factors at a wavelength of 450 nm are obtained for “dry” particle size distributions that peak at a radius of 0.05 μm, while the absorption humidification factors at 700 nm are largest for “dry” size distributions that are dominated by particles in the radius range of 0.06 to 0.08 μm. Single-scattering albedo estimates at ambient conditions are often based on absorption measurements at low RH (∼30%) and the assumption that aerosol absorption does not change upon humidification (i.e., absorption humidification equal to unity). Our modeling study suggests that this assumption alone can introduce absolute errors in estimates of the midvisible single-scattering albedo of up to 0.05 for realistic dry particle size distributions. Our study also indicates that this error increases with increasing wavelength. The potential errors in aerosol single-scattering albedo derived here are comparable in magnitude and in addition to uncertainties in single-scattering albedo estimates that are based on measurements of aerosol light absorption and scattering.


Archive | 1996

A Pinatubo Climate Modeling Investigation

James E. Hansen; Makiko Sato; Reto Ruedy; A. Lacis; K. Asamoah; S. Borenstein; E. Brown; Brian Cairns; G. Caliri; M. Campbell; B. Curran; S. de Castro; Leonard M. Druyan; M. Fox; Colin A. Johnson; J. Lerner; M. P. McCormick; Ron L. Miller; Patrick Minnis; A. Morrison; L. Pandolfo; I. Ramberrann; F. Zaucker; M. Robinson; Philip B. Russell; K. Shah; Peter H. Stone; Ina Tegen; Larry W. Thomason; J. Wilder

Global cooling of the Earth’s surface has been observed following the largest volcanic eruptions of the past century, although the average cooling is perhaps less than expected from simple energy balance considerations. The Mount Pinatubo eruption, with both the climate forcing and response observed better than previous volcanoes, allows a more quantitative analysis of the sensitivity of climate to a transient forcing. We describe the strategy and preliminary results of a comprehensive investigation of the Pinatubo case.

Collaboration


Dive into the Philip B. Russell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beat Schmid

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Peter Pilewskie

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Robert Bergström

Swedish Meteorological and Hydrological Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brent N. Holben

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge