Philip Bejon
Wellcome Trust
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Philip Bejon.
The New England Journal of Medicine | 2008
Philip Bejon; John Lusingu; Ally Olotu; Amanda Leach; Marc Lievens; Johan Vekemans; Salum Mshamu; Trudie Lang; Jayne Gould; Marie-Claude Dubois; Marie-Ange Demoitié; Jean-Francois Stallaert; Preeti Vansadia; Terrell Carter; Patricia Njuguna; Ken Awuondo; Anangisye Malabeja; Omar Abdul; Samwel Gesase; Neema Mturi; Chris Drakeley; Barbara Savarese; Tonya Villafana; W. Ripley Ballou; Joe Cohen; Eleanor M. Riley; Martha M. Lemnge; Kevin Marsh; Lorenz von Seidlein
BACKGROUND Plasmodium falciparum malaria is a pressing global health problem. A previous study of the malaria vaccine RTS,S (which targets the circumsporozoite protein), given with an adjuvant system (AS02A), showed a 30% rate of protection against clinical malaria in children 1 to 4 years of age. We evaluated the efficacy of RTS,S given with a more immunogenic adjuvant system (AS01E) in children 5 to 17 months of age, a target population for vaccine licensure. METHODS We conducted a double-blind, randomized trial of RTS,S/AS01E vaccine as compared with rabies vaccine in children in Kilifi, Kenya, and Korogwe, Tanzania. The primary end point was fever with a falciparum parasitemia density of more than 2500 parasites per microliter, and the mean duration of follow-up was 7.9 months (range, 4.5 to 10.5). RESULTS A total of 894 children were randomly assigned to receive the RTS,S/AS01E vaccine or the control (rabies) vaccine. Among the 809 children who completed the study procedures according to the protocol, the cumulative number in whom clinical malaria developed was 32 of 402 assigned to receive RTS,S/AS01E and 66 of 407 assigned to receive the rabies vaccine; the adjusted efficacy rate for RTS,S/AS01E was 53% (95% confidence interval [CI], 28 to 69; P<0.001) on the basis of Cox regression. Overall, there were 38 episodes of clinical malaria among recipients of RTS,S/AS01E, as compared with 86 episodes among recipients of the rabies vaccine, with an adjusted rate of efficacy against all malarial episodes of 56% (95% CI, 31 to 72; P<0.001). All 894 children were included in the intention-to-treat analysis, which showed an unadjusted efficacy rate of 49% (95% CI, 26 to 65; P<0.001). There were fewer serious adverse events among recipients of RTS,S/AS01E, and this reduction was not only due to a difference in the number of admissions directly attributable to malaria. CONCLUSIONS RTS,S/AS01E shows promise as a candidate malaria vaccine. (ClinicalTrials.gov number, NCT00380393.)
The New England Journal of Medicine | 2016
Angela Huttner; Patricia Njuguna; Christine Dahlke; Sabine Yerly; V. Kraehling; Rahel Kasonta; Marcus Altfeld; Floriane Auderset; Nadine Biedenkopf; S. Borregaard; R. Burrow; Christophe Combescure; Jules Alexandre Desmeules; Markus Eickmann; Axel Finckh; Jay W. Hooper; A. Jambrecina; Kabwende Al; Gürkan Kaya; Domtila Kimani; Bertrand Lell; Barbara Lemaître; Marguerite Massinga-Loembe; Alain Matthey; A. Nolting; Caroline Ogwang; Michael Ramharter; Jonas Schmidt-Chanasit; Stefan Schmiedel; Peter Silvera
BACKGROUND The replication-competent recombinant vesicular stomatitis virus (rVSV)-based vaccine expressing a Zaire ebolavirus (ZEBOV) glycoprotein was selected for rapid safety and immunogenicity testing before its use in West Africa. METHODS We performed three open-label, dose-escalation phase 1 trials and one randomized, double-blind, controlled phase 1 trial to assess the safety, side-effect profile, and immunogenicity of rVSV-ZEBOV at various doses in 158 healthy adults in Europe and Africa. All participants were injected with doses of vaccine ranging from 300,000 to 50 million plaque-forming units (PFU) or placebo. RESULTS No serious vaccine-related adverse events were reported. Mild-to-moderate early-onset reactogenicity was frequent but transient (median, 1 day). Fever was observed in up to 30% of vaccinees. Vaccine viremia was detected within 3 days in 123 of the 130 participants (95%) receiving 3 million PFU or more; rVSV was not detected in saliva or urine. In the second week after injection, arthritis affecting one to four joints developed in 11 of 51 participants (22%) in Geneva, with pain lasting a median of 8 days (interquartile range, 4 to 87); 2 self-limited cases occurred in 60 participants (3%) in Hamburg, Germany, and Kilifi, Kenya. The virus was identified in one synovial-fluid aspirate and in skin vesicles of 2 other vaccinees, showing peripheral viral replication in the second week after immunization. ZEBOV-glycoprotein-specific antibody responses were detected in all the participants, with similar glycoprotein-binding antibody titers but significantly higher neutralizing antibody titers at higher doses. Glycoprotein-binding antibody titers were sustained through 180 days in all participants. CONCLUSIONS In these studies, rVSV-ZEBOV was reactogenic but immunogenic after a single dose and warrants further evaluation for safety and efficacy. (Funded by the Wellcome Trust and others; ClinicalTrials.gov numbers, NCT02283099, NCT02287480, and NCT02296983; Pan African Clinical Trials Registry number, PACTR201411000919191.).
The New England Journal of Medicine | 2013
Ally Olotu; Gregory Fegan; Juliana Wambua; George Nyangweso; Ken Awuondo; Amanda Leach; Marc Lievens; Didier Leboulleux; Patricia Njuguna; Norbert Peshu; Kevin Marsh; Philip Bejon
BACKGROUND The candidate malaria vaccine RTS,S/AS01E has entered phase 3 trials, but data on long-term outcomes are limited. METHODS For 4 years, we followed children who had been randomly assigned, at 5 to 17 months of age, to receive three doses of RTS,S/AS01E vaccine (223 children) or rabies vaccine (224 controls). The end point was clinical malaria (temperature of ≥37.5°C and Plasmodium falciparum parasitemia density of >2500 parasites per cubic millimeter). Each childs exposure to malaria was estimated with the use of the distance-weighted local prevalence of malaria. RESULTS Over a period of 4 years, 118 of 223 children who received the RTS,S/AS01E vaccine and 138 of 224 of the controls had at least 1 episode of clinical malaria. Vaccine efficacies in the intention-to-treat and per-protocol analyses were 29.9% (95% confidence interval [CI], 10.3 to 45.3; P=0.005) and 32.1% (95% CI, 11.6 to 47.8; P=0.004), respectively, calculated by Cox regression. Multiple episodes were common, with 551 and 618 malarial episodes in the RTS,S/AS01E and control groups, respectively; vaccine efficacies in the intention-to-treat and per-protocol analyses were 16.8% (95% CI, -8.6 to 36.3; P=0.18) and 24.3% (95% CI, 1.9 to 41.6; P=0.04), respectively, calculated by the Andersen-Gill extension of the Cox model. For every 100 vaccinated children, 65 cases of clinical malaria were averted. Vaccine efficacy declined over time (P=0.004) and with increasing exposure to malaria (P=0.001) in the per-protocol analysis. Vaccine efficacy was 43.6% (95% CI, 15.5 to 62.3) in the first year but was -0.4% (95% CI, -32.1 to 45.3) in the fourth year. Among children with a malaria-exposure index that was average or lower than average, the vaccine efficacy was 45.1% (95% CI, 11.3 to 66.0), but among children with a malaria-exposure index that was higher than average it was 15.9% (95% CI, -11.0 to 36.4). CONCLUSIONS The efficacy of RTS,S/AS01E vaccine over the 4-year period was 16.8%. Efficacy declined over time and with increasing malaria exposure. (Funded by the PATH Malaria Vaccine Initiative and Wellcome Trust; ClinicalTrials.gov number, NCT00872963.).
PLOS Medicine | 2010
Philip Bejon; Thomas N. Williams; Anne Liljander; Abdisalan M. Noor; Juliana Wambua; Edna Ogada; Ally Olotu; Faith Osier; Simon I. Hay; Anna Färnert; Kevin Marsh
Philip Bejon and colleagues document the clustering of malaria episodes and malarial parasite infection. These patterns may enable future prediction of hotspots of malaria infection and targeting of treatment or preventive interventions.
Infection and Immunity | 2006
Susanna Dunachie; Michael Walther; Judith E. Epstein; Sheila M. Keating; Tamara Berthoud; Laura Andrews; Rikke F. Andersen; Philip Bejon; Nilu Goonetilleke; Ian D. Poulton; Daniel P. Webster; Geoff A. Butcher; Katherine R. Watkins; Robert E. Sinden; G. L. Levine; Thomas L. Richie; Joerg Schneider; David C. Kaslow; Sarah C. Gilbert; Daniel J. Carucci; Adrian V. S. Hill
ABSTRACT The safety, immunogenicity, and efficacy of DNA and modified vaccinia virus Ankara (MVA) prime-boost regimes were assessed by using either thrombospondin-related adhesion protein (TRAP) with a multiple-epitope string ME (ME-TRAP) or the circumsporozoite protein (CS) of Plasmodium falciparum. Sixteen healthy subjects who never had malaria (malaria-naive subjects) received two priming vaccinations with DNA, followed by one boosting immunization with MVA, with either ME-TRAP or CS as the antigen. Immunogenicity was assessed by ex vivo gamma interferon (IFN-γ) enzyme-linked immunospot assay (ELISPOT) and antibody assay. Two weeks after the final vaccination, the subjects underwent P. falciparum sporozoite challenge, with six unvaccinated controls. The vaccines were well tolerated and immunogenic, with the DDM-ME TRAP regimen producing stronger ex vivo IFN-γ ELISPOT responses than DDM-CS. One of eight subjects receiving the DDM-ME TRAP regimen was completely protected against malaria challenge, with this group as a whole showing significant delay to parasitemia compared to controls (P = 0.045). The peak ex vivo IFN-γ ELISPOT response in this group correlated strongly with the number of days to parasitemia (P = 0.033). No protection was observed in the DDM-CS group. Prime-boost vaccination with DNA and MVA encoding ME-TRAP but not CS resulted in partial protection against P. falciparum sporozoite challenge in the present study.
The Journal of Infectious Diseases | 2005
Philip Bejon; Laura Andrews; Rikke F. Andersen; Susanna Dunachie; Daniel P. Webster; Michael Walther; Sarah C. Gilbert; Tim Peto; Adrian V. S. Hill
We calculated the number and growth rate of Plasmodium falciparum parasites emerging in recipients of candidate preerythrocytic malaria vaccines and unvaccinated control subjects undergoing mosquito-bite challenge. This was done to measure vaccine efficacy and to distinguish the effects on blood-stage multiplication from those on liver-stage parasites. Real-time polymerase chain reaction measurements of parasite densities were analyzed by nonlinear regression and mixed-effects models. Substantial reductions in numbers of liver parasites resulted from the use of 2 immunization regimens: FP9 boosted by modified virus Ankara (MVA) encoding the malaria epitope-thrombospondin-related adhesion protein insert (92% reduction) and RTS,S/AS02 used in heterologous prime-boost immunization regimens, with MVA encoding the circumsporozoite protein (97% reduction). Forty-eight-hour growth rates in blood from control subjects were not different from those in blood from any vaccination group (mean, 14.4-fold [95% confidence interval, 11-19-fold]).
Lancet Infectious Diseases | 2011
Ally Olotu; John Lusingu; Amanda Leach; Marc Lievens; Johan Vekemans; Salum Msham; Trudie Lang; Jayne Gould; Marie-Claude Dubois; Erik Jongert; Preeti Vansadia; Terrell Carter; Patricia Njuguna; Ken Awuondo; Anangisye Malabeja; Omar Abdul; Samwel Gesase; Neema Mturi; Chris Drakeley; Barbara Savarese; Tonya Villafana; Didier Lapierre; W. Ripley Ballou; Joe Cohen; Martha M. Lemnge; Norbert Peshu; Kevin Marsh; Eleanor M. Riley; Lorenz von Seidlein; Philip Bejon
Summary Background RTS,S/AS01E is the lead candidate malaria vaccine. We recently showed efficacy against clinical falciparum malaria in 5–17 month old children, during an average of 8 months follow-up. We aimed to assess the efficacy of RTS,S/AS01E during 15 months of follow-up. Methods Between March, 2007, and October, 2008, we enrolled healthy children aged 5–17 months in Kilifi, Kenya, and Korogwe, Tanzania. Computer-generated block randomisation was used to randomly assign participants (1:1) to receive three doses (at month 0, 1, and 2) of either RTS,S/AS01E or human diploid-cell rabies vaccine. The primary endpoint was time to first clinical malaria episode, defined as the presence of fever (temperature ≥37·5°C) and a Plasmodium falciparum density of 2500/μL or more. Follow-up was 12 months for children from Korogwe and 15 months for children from Kilifi. Primary analysis was per protocol. In a post-hoc modelling analysis we characterised the associations between anti-circumsporozoite antibodies and protection against clinical malaria episodes. This study is registered with ClinicalTrials.gov, number NCT00380393. Findings 894 children were assigned, 447 in each treatment group. In the per-protocol analysis, 82 of 415 children in the RTS,S/AS01E group and 125 of 420 in the rabies vaccine group had first or only clinical malaria episode by 12 months, vaccine efficacy 39·2% (95% CI 19·5–54·1, p=0·0005). At 15 months follow-up, 58 of 209 children in the RTS,S/AS01E group and 85 of 206 in the rabies vaccine group had first or only clinical malaria episode, vaccine efficacy 45·8% (24·1–61·3, p=0·0004). At 12 months after the third dose, anti-circumsporozoite antibody titre data were available for 390 children in the RTS,S/AS01E group and 391 in the rabies group. A mean of 15 months (range 12–18 months) data were available for 172 children in the RTS,S/AS01E group and 155 in the rabies group. These titres at 1 month after the third dose were not associated with protection, but titres at 6·5 months were. The level of protection increased abruptly over a narrow range of antibody concentrations. The most common adverse events were pneumonia, febrile convulsion, gastroenteritis, and P falciparum malaria. Interpretation RTS,S/AS01E confers sustained efficacy for at least 15 months and shows promise as a potential public health intervention against childhood malaria in malaria endemic countries. Funding PATH Malaria Vaccine Initiative (MVI), GlaxoSmithKline.
Journal of Immunology | 2013
Joseph J. Illingworth; Noah S. Butler; Sophie Roetynck; Jedida Mwacharo; Susan K. Pierce; Philip Bejon; Peter D. Crompton; Kevin Marsh; Francis M. Ndungu
Naturally acquired immunity to malaria develops slowly, requiring several years of repeated exposure to be effective. The cellular and molecular factors underlying this observation are only partially understood. Recent studies suggest that chronic Plasmodium falciparum exposure may induce functional exhaustion of lymphocytes, potentially impeding optimal control of infection. However, it remains unclear whether the “atypical” memory B cells (MBCs) and “exhausted” CD4 T cells described in humans exposed to endemic malaria are driven by P. falciparum per se or by other factors commonly associated with malaria, such as coinfections and malnutrition. To address this critical question we took advantage of a “natural” experiment near Kilifi, Kenya, and compared profiles of B and T cells of children living in a rural community where P. falciparum transmission is ongoing to the profiles of age-matched children living under similar conditions in a nearby community where P. falciparum transmission ceased 5 y prior to this study. We found that continuous exposure to P. falciparum drives the expansion of atypical MBCs. Persistent P. falciparum exposure was associated with an increased frequency of CD4 T cells expressing phenotypic markers of exhaustion, both programmed cell death-1 (PD-1) alone and PD-1 in combination with lymphocyte-activation gene-3 (LAG-3). This expansion of PD-1–expressing and PD-1/LAG-3–coexpressing CD4 T cells was largely confined to CD45RA+ CD4 T cells. The percentage of CD45RA+CD27+ CD4 T cells coexpressing PD-1 and LAG-3 was inversely correlated with frequencies of activated and classical MBCs. Taken together, these results suggest that P. falciparum infection per se drives the expansion of atypical MBCs and phenotypically exhausted CD4 T cells, which has been reported in other endemic areas.
PLOS Clinical Trials | 2006
Philip Bejon; Jedidah Mwacharo; Oscar Kai; Tabitha W. Mwangi; Paul Milligan; Stephen Todryk; Sheila M. Keating; Trudie Lang; Brett Lowe; Caroline Gikonyo; Catherine Molyneux; Greg Fegan; Sarah C. Gilbert; Norbert Peshu; Kevin Marsh; Adrian V. S. Hill
Objective: The objective was to measure the efficacy of the vaccination regimen FFM ME-TRAP in preventing episodes of clinical malaria among children in a malaria endemic area. FFM ME-TRAP is sequential immunisation with two attenuated poxvirus vectors (FP9 and modified vaccinia virus Ankara), which both deliver the pre-erythrocytic malaria antigen construct multiple epitope–thrombospondin-related adhesion protein (ME-TRAP). Design: The trial was randomised and double-blinded. Setting: The setting was a rural, malaria-endemic area of coastal Kenya. Participants: We vaccinated 405 healthy 1- to 6-year-old children. Interventions: Participants were randomised to vaccination with either FFM ME-TRAP or control (rabies vaccine). Outcome Measures: Following antimalarial drug treatment children were seen weekly and whenever they were unwell during nine months of monitoring. The axillary temperature was measured, and blood films taken when febrile. The primary analysis was time to a parasitaemia of over 2,500 parasites/μl. Results: The regime was moderately immunogenic, but the magnitude of T cell responses was lower than in previous studies. In intention to treat (ITT) analysis, time to first episode was shorter in the FFM ME-TRAP group. The cumulative incidence of febrile malaria was 52/190 (27%) for FFM ME-TRAP and 40/197 (20%) among controls (hazard ratio = 1.52). This was not statistically significant (95% confidence interval [CI] 1.0–2.3; p = 0.14 by log-rank). A group of 346 children were vaccinated according to protocol (ATP). Among these children, the hazard ratio was 1.3 (95% CI 0.8–2.1; p = 0.55 by log-rank). When multiple malaria episodes were included in the analyses, the incidence rate ratios were 1.6 (95% CI 1.1–2.3); p = 0.017 for ITT, and 1.4 (95% CI 0.9–2.1); p = 0.16 for ATP. Haemoglobin and parasitaemia in cross-sectional surveys at 3 and 9 mo did not differ by treatment group. Among children vaccinated with FFM ME-TRAP, there was no correlation between immunogenicity and malaria incidence. Conclusions: No protection was induced against febrile malaria by this vaccine regimen. Future field studies will require vaccinations with stronger immunogenicity in children living in malarious areas.
Clinical Infectious Diseases | 2009
James A. Berkley; Philip Bejon; Tabitha W. Mwangi; Samson Gwer; Kathryn Maitland; Thomas N. Williams; Shebe Mohammed; Faith Osier; Samson M Kinyanjui; Greg Fegan; Brett Lowe; Mike English; Norbert Peshu; Kevin Marsh; Charles R. Newton
BACKGROUND Human immunodeficiency virus (HIV) infection, malnutrition, and invasive bacterial infection (IBI) are reported among children with severe malaria. However, it is unclear whether their cooccurrence with falciparum parasitization and severe disease happens by chance or by association among children in areas where malaria is endemic. METHODS We examined 3068 consecutive children admitted to a Kenyan district hospital with clinical features of severe malaria and 592 control subjects from the community. We performed multivariable regression analysis, with each case weighted for its probability of being due to falciparum malaria, using estimates of the fraction of severe disease attributable to malaria at different parasite densities derived from cross-sectional parasitological surveys of healthy children from the same community. RESULTS HIV infection was present in 133 (12%) of 1071 consecutive parasitemic admitted children (95% confidence interval [CI], 11%-15%). Parasite densities were higher in HIV-infected children. The odds ratio for admission associated with HIV infection for admission with true severe falciparum malaria was 9.6 (95% CI, 4.9-19); however, this effect was restricted to children aged 1 year. Malnutrition was present in 507 (25%) of 2048 consecutive parasitemic admitted children (95% CI, 23%-27%). The odd ratio associated with malnutrition for admission with true severe falciparum malaria was 4.0 (95% CI, 2.9-5.5). IBI was detected in 127 (6%) of 2048 consecutive parasitemic admitted children (95% CI, 5.2%-7.3%). All 3 comorbidities were associated with increased case fatality. CONCLUSIONS HIV, malnutrition and IBI are biologically associated with severe disease due to falciparum malaria rather than being simply alternative diagnoses in co-incidentally parasitized children in an endemic area.