Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philip J. Ebert is active.

Publication


Featured researches published by Philip J. Ebert.


Proceedings of the National Academy of Sciences of the United States of America | 2006

A genetic variant that disrupts MET transcription is associated with autism

Daniel B. Campbell; James S. Sutcliffe; Philip J. Ebert; Roberto Militerni; Carmela Bravaccio; Simona Trillo; Maurizio Elia; Cindy Schneider; Raun Melmed; Roberto Sacco; Antonio M. Persico; Pat Levitt

There is strong evidence for a genetic predisposition to autism and an intense interest in discovering heritable risk factors that disrupt gene function. Based on neurobiological findings and location within a chromosome 7q31 autism candidate gene region, we analyzed the gene encoding the pleiotropic MET receptor tyrosine kinase in a family based study of autism including 1,231 cases. MET signaling participates in neocortical and cerebellar growth and maturation, immune function, and gastrointestinal repair, consistent with reported medical complications in some children with autism. Here, we show genetic association (P = 0.0005) of a common C allele in the promoter region of the MET gene in 204 autism families. The allelic association at this MET variant was confirmed in a replication sample of 539 autism families (P = 0.001) and in the combined sample (P = 0.000005). Multiplex families, in which more than one child has autism, exhibited the strongest allelic association (P = 0.000007). In case-control analyses, the autism diagnosis relative risk was 2.27 (95% confidence interval: 1.41–3.65; P = 0.0006) for the CC genotype and 1.67 (95% confidence interval: 1.11–2.49; P = 0.012) for the CG genotype compared with the GG genotype. Functional assays showed that the C allele results in a 2-fold decrease in MET promoter activity and altered binding of specific transcription factor complexes. These data implicate reduced MET gene expression in autism susceptibility, providing evidence of a previously undescribed pathophysiological basis for this behaviorally and medically complex disorder.


Neurobiology of Disease | 2008

Immune transcriptome alterations in the temporal cortex of subjects with autism

Krassimira A. Garbett; Philip J. Ebert; Amanda C. Mitchell; Carla Lintas; Barbara Manzi; Karoly Mirnics; Antonio M. Persico

Autism is a severe disorder that involves both genetic and environmental factors. Expression profiling of the superior temporal gyrus of six autistic subjects and matched controls revealed increased transcript levels of many immune system-related genes. We also noticed changes in transcripts related to cell communication, differentiation, cell cycle regulation and chaperone systems. Critical expression changes were confirmed by qPCR (BCL6, CHI3L1, CYR61, IFI16, IFITM3, MAP2K3, PTDSR, RFX4, SPP1, RELN, NOTCH2, RIT1, SFN, GADD45B, HSPA6, HSPB8 and SERPINH1). Overall, these expression patterns appear to be more associated with the late recovery phase of autoimmune brain disorders, than with the innate immune response characteristic of neurodegenerative diseases. Moreover, a variance-based analysis revealed much greater transcript variability in brains from autistic subjects compared to the control group, suggesting that these genes may represent autism susceptibility genes and should be assessed in follow-up genetic studies.


Nature Neuroscience | 2006

RGS4-dependent attenuation of M4 autoreceptor function in striatal cholinergic interneurons following dopamine depletion.

Jun B. Ding; Jaime N. Guzman; Tatiana Tkatch; Songhai Chen; Joshua A. Goldberg; Philip J. Ebert; Pat Levitt; Charles J. Wilson; Heidi E. Hamm; D. James Surmeier

Parkinson disease is a neurodegenerative disorder whose symptoms are caused by the loss of dopaminergic neurons innervating the striatum. As striatal dopamine levels fall, striatal acetylcholine release rises, exacerbating motor symptoms. This adaptation is commonly attributed to the loss of interneuronal regulation by inhibitory D2 dopamine receptors. Our results point to a completely different, new mechanism. After striatal dopamine depletion, D2 dopamine receptor modulation of calcium (Ca2+) channels controlling vesicular acetylcholine release in interneurons was unchanged, but M4 muscarinic autoreceptor coupling to these same channels was markedly attenuated. This adaptation was attributable to the upregulation of RGS4—an autoreceptor-associated, GTPase-accelerating protein. This specific signaling adaptation extended to a broader loss of autoreceptor control of interneuron spiking. These observations suggest that RGS4-dependent attenuation of interneuronal autoreceptor signaling is a major factor in the elevation of striatal acetylcholine release in Parkinson disease.


Annals of Neurology | 2007

Disruption of cerebral cortex MET signaling in autism spectrum disorder

Daniel B. Campbell; Rosanna D'Oronzio; Krassi Garbett; Philip J. Ebert; Karoly Mirnics; Pat Levitt; Antonio M. Persico

Multiple genes contribute to autism spectrum disorder (ASD) susceptibility. One particularly promising candidate is the MET gene, which encodes a receptor tyrosine kinase that mediates hepatocyte growth factor (HGF) signaling in brain circuit formation, immune function, and gastrointestinal repair. The MET promoter variant rs1858830 allele “C” is strongly associated with ASD and results in reduced gene transcription. Here we examined expression levels of MET and members of the MET signaling pathway in postmortem cerebral cortex from ASD cases and healthy control subjects.


Molecular Systems Biology | 2009

The organization of the transcriptional network in specific neuronal classes.

Kellen D. Winden; Michael C. Oldham; Karoly Mirnics; Philip J. Ebert; Christo H. Swan; Pat Levitt; John L.R. Rubenstein; Steve Horvath; Daniel H. Geschwind

Genome‐wide expression profiling has aided the understanding of the molecular basis of neuronal diversity, but achieving broad functional insight remains a considerable challenge. Here, we perform the first systems‐level analysis of microarray data from single neuronal populations using weighted gene co‐expression network analysis to examine how neuronal transcriptome organization relates to neuronal function and diversity. We systematically validate network predictions using published proteomic and genomic data. Several network modules of co‐expressed genes correspond to interneuron development programs, in which the hub genes are known to be critical for interneuron specification. Other co‐expression modules relate to fundamental cellular functions, such as energy production, firing rate, trafficking, and synapses, suggesting that fundamental aspects of neuronal diversity are produced by quantitative variation in basic metabolic processes. We identify two transcriptionally distinct mitochondrial modules and demonstrate that one corresponds to mitochondria enriched in neuronal processes and synapses, whereas the other represents a population restricted to the soma. Finally, we show that galectin‐1 is a new interneuron marker, and we validate network predictions in vivo using Rgs4 and Dlx1/2 knockout mice. These analyses provide a basis for understanding how specific aspects of neuronal phenotypic diversity are organized at the transcriptional level.


The Journal of Neuroscience | 2007

Amygdala Gene Expression Correlates of Social Behavior in Monkeys Experiencing Maternal Separation

Michael Sabatini; Philip J. Ebert; David A. Lewis; Pat Levitt; Judy L. Cameron; Karoly Mirnics

Children exposed to early parental loss from death or separation carry a greater risk for developing future psychiatric illnesses, such as major depression and anxiety. Monkeys experiencing maternal separation at 1 week of age show fewer social behaviors and an increase in self-comforting behaviors (e.g., thumb sucking) over development, whereas in contrast, monkeys experiencing maternal separation at 1 month of age show increased seeking of social comfort later in life. We sought to identify neural systems that may underlie these stress-induced behavioral changes by examining changes in mRNA content in amygdala tissue collected from 1 week separated, 1 month separated, and maternally reared infants at 3 months of age. mRNA from the right medial temporal lobe, primarily the amygdala, was analyzed using Affymetrix U133A 2.0 arrays. One gene, guanylate cyclase 1 α 3 (GUCY1A3), showed differential expression between the 1 week and maternally reared groups and the 1 week and 1 month groups; these changes were confirmed by in situ hybridization. The expression of this gene was positively correlated with acute social-comforting behavior (r = 0.923; p = 0.001) and longer-term close social behavior (r = 0.708; p = 0.015) and negatively correlated with self-comforting behaviors (r = −0.88; p < 0.001). Additional in situ hybridization studies of GUCY1A3 in normal monkeys showed that this gene is expressed at adult levels by 1 week of age and that its expression is greater in the amygdala than all other brain areas examined. We conclude that GUCY1A3 may contribute to the altered behavioral phenotypes that are differentially displayed depending on the age at which macaque infants experience an early-life stress.


Biological Psychiatry | 2006

Making the Case for a Candidate Vulnerability Gene in Schizophrenia: Convergent Evidence for Regulator of G-Protein Signaling 4 (RGS4)

Pat Levitt; Philip J. Ebert; Karoly Mirnics; Vishwajit L. Nimgaonkar; David A. Lewis

Both genetic and environmental factors have been associated with an increased risk for schizophrenia. These factors are not mutually exclusive; a single gene can be a genetic factor (due to a mutation in the gene sequence) and a target of a physiological response to an environmental stimulus, both with the common endpoint of altered expression of the gene. Regulator of G-protein signaling 4 (RGS4) has been implicated as such a gene from three lines of evidence. First, a subset of genetic studies revealed an association between schizophrenia and non-functional polymorphisms in the RGS4 gene. Second, across the cortical mantle the expression of RGS4 mRNA is decreased in a diagnosis-specific manner in subjects with schizophrenia. Third, neurobiological studies demonstrate that RGS4 is highly responsive to environmental stimuli and capable of modulating the function of G-protein coupled neurotransmitter receptors implicated in schizophrenia. RGS4 is an example of a molecule that may underlie increased vulnerability through either genetic or non-genetic mechanisms, which we suggest may be typical of other genes in a complex, polygenic disorder such as schizophrenia.


Proceedings of the National Academy of Sciences of the United States of America | 2010

RGS4 is a negative regulator of insulin release from pancreatic beta-cells in vitro and in vivo.

Inigo Ruiz de Azua; Marco Scarselli; Erica Rosemond; Dinesh Gautam; William Jou; Oksana Gavrilova; Philip J. Ebert; Pat Levitt; Jürgen Wess

Therapeutic strategies that augment insulin release from pancreatic β-cells are considered beneficial in the treatment of type 2 diabetes. We previously demonstrated that activation of β-cell M3 muscarinic receptors (M3Rs) greatly promotes glucose-stimulated insulin secretion (GSIS), suggesting that strategies aimed at enhancing signaling through β-cell M3Rs may become therapeutically useful. M3R activation leads to the stimulation of G proteins of the Gq family, which are under the inhibitory control of proteins known as regulators of G protein signaling (RGS proteins). At present, it remains unknown whether RGS proteins play a role in regulating insulin release. To address this issue, we initially demonstrated that MIN6 insulinoma cells express functional M3Rs and that RGS4 was by far the most abundant RGS protein expressed by these cells. Strikingly, siRNA-mediated knockdown of RGS4 expression in MIN6 cells greatly enhanced M3R-mediated augmentation of GSIS and calcium release. We obtained similar findings using pancreatic islets prepared from RGS4-deficient mice. Interestingly, RGS4 deficiency had little effect on insulin release caused by activation of other β-cell GPCRs. Finally, treatment of mutant mice selectively lacking RGS4 in pancreatic β-cells with a muscarinic agonist (bethanechol) led to significantly increased plasma insulin and reduced blood glucose levels, as compared to control littermates. Studies with β-cell-specific M3R knockout mice showed that these responses were mediated by β-cell M3Rs. These findings indicate that RGS4 is a potent negative regulator of M3R function in pancreatic β-cells, suggesting that RGS4 may represent a potential target to promote insulin release for therapeutic purposes.


Neuroscience | 2006

Bacterial artificial chromosome transgenic analysis of dynamic expression patterns of regulator of G-protein signaling 4 during development. I. Cerebral cortex.

Philip J. Ebert; Daniel B. Campbell; Pat Levitt

Signaling through G-protein-coupled receptors is modulated by a family of regulator of G protein signaling (RGS) proteins that have been implicated in several neurological and psychiatric disorders. Defining the detailed expression patterns and developmental regulation of RGS proteins has been hampered by an absence of antibodies useful for mapping. We have utilized bacterial artificial chromosome (BAC) methods to create transgenic mice that express GFP under the control of endogenous regulator of G-protein signaling 4 (RGS4) enhancer elements. This report focuses on expression patterns in the developing and mature cerebral cortex. Based on reporter distribution, RGS4 is expressed by birth in neurons across all cortical domains, but in different patterns that suggest region- and layer-specific regulation. Peak expression typically occurs before puberty, with complex down-regulation by adulthood. Deep and superficial neurons, in particular, vary in their patterns across developmental age and region and, in primary sensory cortices, layer IV neurons exhibit low or no expression of the GFP reporter. These data suggest that altering RGS4 function will produce a complex neuronal phenotype with cell- and subdomain-specificity in the cerebral cortex.


Neurobiology of Disease | 2014

The role of cannabinoid 1 receptor expressing interneurons in behavior.

Jacquelyn A. Brown; Szatmár Horváth; Krassimira A. Garbett; Martin J. Schmidt; Monika Everheart; Levente Gellért; Philip J. Ebert; Karoly Mirnics

Schizophrenia is a devastating neurodevelopmental disorder that affects approximately 1% of the population. Reduced expression of the 67-kDa protein isoform of glutamic acid decarboxylase (GAD67) is a hallmark of the disease and is encoded by the GAD1 gene. In schizophrenia, GAD67 downregulation occurs in multiple interneuronal subpopulations, including the cannabinoid receptor type 1 positive (CNR1+) cells, but the functional consequences of these disturbances are not well understood. To investigate the role of the CNR1-positive GABA-ergic interneurons in behavioral and molecular processes, we employed a novel, miRNA-mediated transgenic mouse approach. We silenced the Gad1 transcript using a miRNA engineered to specifically target Gad1 mRNA under the control of Cnr1 bacterial artificial chromosome. Behavioral characterization of our transgenic mice showed elevated and persistent conditioned fear associated with an auditory cue and a significantly altered response to an amphetamine challenge. These deficits could not be attributed to sensory deficits or changes in baseline learning and memory. Furthermore, HPLC analyses revealed that Cnr1/Gad1 mice have enhanced serotonin levels, but not dopamine levels in response to amphetamine. Our findings demonstrate that dysfunction of a small subset of interneurons can have a profound effect on behavior and that the GABA-ergic, monoamine, and cannabinoid systems are functionally interconnected. The results also suggest that understanding the function of various interneuronal subclasses might be essential to develop knowledge-based treatment strategies for various mental disorders including schizophrenia and substance abuse.

Collaboration


Dive into the Philip J. Ebert's collaboration.

Top Co-Authors

Avatar

Pat Levitt

Children's Hospital Los Angeles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel B. Campbell

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio M. Persico

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

David A. Lewis

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge