Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philip J. Murray is active.

Publication


Featured researches published by Philip J. Murray.


Cell Proliferation | 2009

An integrative computational model for intestinal tissue renewal.

I.M.M. van Leeuwen; Gary R. Mirams; Alex Walter; Alexander G. Fletcher; Philip J. Murray; James M. Osborne; S. Varma; S. J. Young; Jonathan Cooper; B. Doyle; Joe Pitt-Francis; Lee Momtahan; Pras Pathmanathan; Jonathan P. Whiteley; S. J. Chapman; David J. Gavaghan; Oliver E. Jensen; John R. King; Philip K. Maini; Sarah L. Waters; Helen M. Byrne

Objectives:  The luminal surface of the gut is lined with a monolayer of epithelial cells that acts as a nutrient absorptive engine and protective barrier. To maintain its integrity and functionality, the epithelium is renewed every few days. Theoretical models are powerful tools that can be used to test hypotheses concerning the regulation of this renewal process, to investigate how its dysfunction can lead to loss of homeostasis and neoplasia, and to identify potential therapeutic interventions. Here we propose a new multiscale model for crypt dynamics that links phenomena occurring at the subcellular, cellular and tissue levels of organisation.


Biophysical Journal | 2010

Modelling Spatially Regulated β-Catenin Dynamics and Invasion in Intestinal Crypts

Philip J. Murray; Jun-Won Kang; Gary R. Mirams; Sung-Young Shin; Helen M. Byrne; Philip K. Maini; Kwang-Hyun Cho

Experimental data (e.g., genetic lineage and cell population studies) on intestinal crypts reveal that regulatory features of crypt behavior, such as control via morphogen gradients, are remarkably well conserved among numerous organisms (e.g., from mouse and rat to human) and throughout the different regions of the small and large intestines. In this article, we construct a partial differential equation model of a single colonic crypt that describes the spatial distribution of Wnt pathway proteins along the crypt axis. The novelty of our continuum model is that it is based upon assumptions that can be directly related to processes at the cellular and subcellular scales. We use the model to predict how the distributions of Wnt pathway proteins are affected by mutations. The model is then extended to investigate how mutant cell populations can invade neighboring crypts. The model simulations suggest that cell crowding caused by increased proliferation and decreased cell loss may be sufficient for a mutant cell population to colonize a neighboring healthy crypt.


Journal of Theoretical Biology | 2011

The clock and wavefront model revisited

Philip J. Murray; Philip K. Maini; Ruth E. Baker

The currently accepted interpretation of the clock and wavefront model of somitogenesis is that a posteriorly moving molecular gradient sequentially slows the rate of clock oscillations, resulting in a spatial readout of temporal oscillations. However, while molecular components of the clocks and wavefronts have now been identified in the pre-somitic mesoderm (PSM), there is not yet conclusive evidence demonstrating that the observed molecular wavefronts act to slow clock oscillations. Here we present an alternative formulation of the clock and wavefront model in which oscillator coupling, already known to play a key role in oscillator synchronisation, plays a fundamentally important role in the slowing of oscillations along the anterior-posterior (AP) axis. Our model has three parameters which can be determined, in any given species, by the measurement of three quantities: the clock period in the posterior PSM, somite length and the length of the PSM. A travelling wavefront, which slows oscillations along the AP axis, is an emergent feature of the model. Using the model we predict: (a) the distance between moving stripes of gene expression; (b) the number of moving stripes of gene expression and (c) the oscillator period profile along the AP axis. Predictions regarding the stripe data are verified using existing zebrafish data. We simulate a range of experimental perturbations and demonstrate how the model can be used to unambiguously define a reference frame along the AP axis. Comparing data from zebrafish, chick, mouse and snake, we demonstrate that: (a) variation in patterning profiles is accounted for by a single nondimensional parameter; the ratio of coupling strengths; and (b) the period profile along the AP axis is conserved across species. Thus the model is consistent with the idea that, although the genes involved in pattern propagation in the PSM vary, there is a conserved patterning mechanism across species.


Physical Biology | 2011

Comparing a discrete and continuum model of the intestinal crypt.

Philip J. Murray; Alex Walter; Alexander G. Fletcher; Carina M. Edwards; Marcus J. Tindall; Philip K. Maini

The integration of processes at different scales is a key problem in the modelling of cell populations. Owing to increased computational resources and the accumulation of data at the cellular and subcellular scales, the use of discrete, cell-level models, which are typically solved using numerical simulations, has become prominent. One of the merits of this approach is that important biological factors, such as cell heterogeneity and noise, can be easily incorporated. However, it can be difficult to efficiently draw generalizations from the simulation results, as, often, many simulation runs are required to investigate model behaviour in typically large parameter spaces. In some cases, discrete cell-level models can be coarse-grained, yielding continuum models whose analysis can lead to the development of insight into the underlying simulations. In this paper we apply such an approach to the case of a discrete model of cell dynamics in the intestinal crypt. An analysis of the resulting continuum model demonstrates that there is a limited region of parameter space within which steady-state (and hence biologically realistic) solutions exist. Continuum model predictions show good agreement with corresponding results from the underlying simulations and experimental data taken from murine intestinal crypts.


PLOS Computational Biology | 2012

Modelling Hair Follicle Growth Dynamics as an Excitable Medium

Philip J. Murray; Philip K. Maini; Maksim V. Plikus; Cheng-Ming Chuong; Ruth E. Baker

The hair follicle system represents a tractable model for the study of stem cell behaviour in regenerative adult epithelial tissue. However, although there are numerous spatial scales of observation (molecular, cellular, follicle and multi follicle), it is not yet clear what mechanisms underpin the follicle growth cycle. In this study we seek to address this problem by describing how the growth dynamics of a large population of follicles can be treated as a classical excitable medium. Defining caricature interactions at the molecular scale and treating a single follicle as a functional unit, a minimal model is proposed in which the follicle growth cycle is an emergent phenomenon. Expressions are derived, in terms of parameters representing molecular regulation, for the time spent in the different functional phases of the cycle, a formalism that allows the model to be directly compared with a previous cellular automaton model and experimental measurements made at the single follicle scale. A multi follicle model is constructed and numerical simulations are used to demonstrate excellent qualitative agreement with a range of experimental observations. Notably, the excitable medium equations exhibit a wider family of solutions than the previous work and we demonstrate how parameter changes representing altered molecular regulation can explain perturbed patterns in Wnt over-expression and BMP down-regulation mouse models. Further experimental scenarios that could be used to test the fundamental premise of the model are suggested. The key conclusion from our work is that positive and negative regulatory interactions between activators and inhibitors can give rise to a range of experimentally observed phenomena at the follicle and multi follicle spatial scales and, as such, could represent a core mechanism underlying hair follicle growth.


Mathematical Models and Methods in Applied Sciences | 2015

Multiscale modelling of intestinal crypt organization and carcinogenesis

Alexander G. Fletcher; Philip J. Murray; Philip K. Maini

Colorectal cancers are the third most common type of cancer. They originate from intestinal crypts, glands that descend from the intestinal lumen into the underlying connective tissue. Normal crypts are thought to exist in a dynamic equilibrium where the rate of cell production at the base of a crypt is matched by that of loss at the top. Understanding how genetic alterations accumulate and proceed to disrupt this dynamic equilibrium is fundamental to understanding the origins of colorectal cancer. Colorectal cancer emerges from the interaction of biological processes that span several spatial scales, from mutations that cause inappropriate intracellular responses to changes at the cell/tissue level, such as uncontrolled proliferation and altered motility and adhesion. Multiscale mathematical modelling can provide insight into the spatiotemporal organisation of such a complex, highly regulated and dynamic system. Moreover, the aforementioned challenges are inherent to the multiscale modelling of biological tissue more generally. In this review we describe the mathematical approaches that have been applied to investigate multiscale aspects of crypt behaviour, highlighting a number of model predictions that have since been validated experimentally. We also discuss some of the key mathematical and computational challenges associated with the multiscale modelling approach. We conclude by discussing recent efforts to derive coarse-grained descriptions of such models, which may offer one way of reducing the computational cost of simulation by leveraging well-established tools of mathematical analysis to address key problems in multiscale modelling.


Current Opinion in Genetics & Development | 2012

Understanding hair follicle cycling: a systems approach

Ruth E. Baker; Philip J. Murray

Continuous stem cell regeneration is essential for the repair and maintenance of many organs, rendering an understanding of the mechanisms underlying this phenomenon of prime importance. In this respect the hair follicle system provides an excellent test bed: mammalian skin contains thousands of hair follicles, each of which undergoes continuous regenerative cycling events that can be visualized via changing pigmentation patterns. Moreover, the system is inherently two-dimensional and reasonably easy to manipulate experimentally. Combined, the hair follicle system is an ideal candidate for an integrated theoretical and experimental approach that characterizes events occurring over multiple spatial and temporal scales. In this work we summarise recent developments in the field, and outline our hopes for future iterations of modelling and experiment.


Archive | 2013

Modelling Oscillator Synchronisation During Vertebrate Axis Segmentation

Philip J. Murray; Philip K. Maini; Ruth E. Baker

The somitogenesis clock regulates the periodicity with which somites form in the posterior pre-somitic mesoderm. Whilst cell heterogeneity results in noisy oscillation rates amongst constituent cells, synchrony within the population is maintained as oscillators are entrained via juxtracine signalling mechanisms. Here we consider a population of phase-coupled oscillators and investigate how biologically motivated perturbations to the entrained state can perturb synchrony within the population. We find that the ratio of mitosis length to clock period can influence levels of desynchronisation. Moreover, we observe that random cell movement, and hence change of local neighbourhoods, increases synchronisation.


Computer Physics Communications | 2009

Chaste: A test-driven approach to software development for biological modelling ☆

Joe Pitt-Francis; Pras Pathmanathan; Miguel O. Bernabeu; Rafel Bordas; Jonathan Cooper; Alexander G. Fletcher; Gary R. Mirams; Philip J. Murray; James M. Osborne; Alex Walter; S. Jonathan Chapman; Alan Garny; Ingeborg M.M. van Leeuwen; Philip K. Maini; Blanca Rodriguez; Sarah L. Waters; Jonathan P. Whiteley; Helen M. Byrne; David J. Gavaghan


Physical Biology | 2009

A computational study of discrete mechanical tissue models

Pras Pathmanathan; Jonathan Cooper; Alexander G. Fletcher; Gary R. Mirams; Philip J. Murray; James M. Osborne; Joe Pitt-Francis; Alex Walter; S. J. Chapman

Collaboration


Dive into the Philip J. Murray's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary R. Mirams

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex Walter

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge