Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philip K.-Y. Chang is active.

Publication


Featured researches published by Philip K.-Y. Chang.


European Journal of Neuroscience | 2012

AMPA receptors as drug targets in neurological disease – advantages, caveats, and future outlook

Philip K.-Y. Chang; David Verbich; R. Anne McKinney

Most excitatory transmission in the brain is mediated by the AMPA receptor subtype of the ionotropic glutamate receptors. In many neurological diseases, synapse structure and AMPA receptor function are altered, thus making AMPA receptors potential therapeutic targets for clinical intervention. The work summarized in this review suggests a link between AMPA receptor function and debilitating neuropathologies, and discusses the current state of therapies targeting AMPA receptors in four diseases. In amyotrophic lateral sclerosis, AMPA receptors allow cytotoxic levels of calcium into neurons, leading to motor neuron death. Likewise, in some epilepsies, overactivation of AMPA receptors leads to neuron damage. The same is true for ischemia, where oxygen deprivation leads to excitotoxicity. Conversely, Alzheimer’s disease is characterized by decreased AMPA activation and synapse loss. Unfortunately, many clinical studies have had limited success by directly targeting AMPA receptors in these diseases. We also discuss how the use of AMPA receptor modulators, commonly known as ampakines, in neurological diseases initially seemed promising in animal studies, but mostly ineffective in clinical trials. We propose that indirectly affecting AMPA receptors, such as by modulating transmembrane AMPA receptor regulatory proteins or, more generally, by regulating glutamatergic transmission, may provide new therapeutic potential for neurological disorders.


Journal of Neuroinflammation | 2015

Docosahexaenoic acid (DHA): a modulator of microglia activity and dendritic spine morphology.

Philip K.-Y. Chang; Armen Khatchadourian; Rebecca Anne McKinney; Dusica Maysinger

BackgroundRecent studies have revealed that excessive activation of microglia and inflammation-mediated neurotoxicity are implicated in the progression of several neurological disorders. In particular, chronic inflammation in vivo and exposure of cultured brain cells to lipopolysaccharide (LPS) in vitro can adversely change microglial morphology and function. This can have both direct and indirect effects on synaptic structures and functions. The integrity of dendritic spines, the postsynaptic component of excitatory synapses, dictates synaptic efficacy. Interestingly, dysgenesis of dendritic spines has been found in many neurological diseases associated with ω-3 polyunsaturated fatty acid (PUFA) deficiency and cognitive decline. In contrast, supplemented ω-3 PUFAs, such as docosahexaenoic acid (DHA), can partly correct spine defects. Hence, we hypothesize that DHA directly affects synaptic integrity and indirectly through neuron-glia interaction. Strong activation of microglia by LPS is accompanied by marked release of nitric oxide and formation of lipid bodies (LBs), both dynamic biomarkers of inflammation. Here we investigated direct effects of DHA on synaptic integrity and its indirect effects via microglia in the hippocampal CA1 region.MethodsMicroglia (N9) and organotypic hippocampal slice cultures were exposed to the proinflammagen LPS (100 ng/ml) for 24 h. Biochemical and morphological markers of inflammation were investigated in microglia and CA1 regions of hippocampal slices. As biomarkers of hyperactive microglia, mitochondrial function, nitric oxide release and LBs (number, size, LB surface-associated proteins) were assessed. Changes in synaptic transmission of CA1 pyramidal cells were determined following LPS and DHA (25-50 μM) treatments by recording spontaneous AMPA-mediated miniature excitatory postsynaptic currents (mEPSCs).ResultsMicroglia responded to LPS stimulation with a significant decrease of mitochondrial function, increased nitric oxide production and an increase in the formation of large LBs. LPS treatment led to a significant reduction of dendritic spine densities and an increase in the AMPA-mediated mEPSC inter-event interval (IEI). DHA normalized the LPS-induced abnormalities in both neurons and microglia, as revealed by the restoration of synaptic structures and functions in hippocampal CA1 pyramidal neurons.ConclusionOur findings indicate that DHA can prevent LPS-induced abnormalities (neuroinflammation) by reducing inflammatory biomarkers, thereby normalizing microglia activity and their effect on synaptic function.


Glia | 2012

Glial glutamate transport modulates dendritic spine head protrusions in the hippocampus

David Verbich; George A. Prenosil; Philip K.-Y. Chang; Keith K. Murai; R. Anne McKinney

Accumulating evidence supports the idea that synapses are tripartite, whereby perisynaptic astrocytes modulate both pre‐ and postsynaptic function. Although some of these features have been uncovered by using electrophysiological methods, less is known about the structural interplay between synapses and glial processes. Here, we investigated how astrocytes govern the plasticity of individual hippocampal dendritic spines. Recently, we uncovered that a subgroup of innervated dendritic spines is able to undergo remodeling by extending spine head protrusions (SHPs) toward neighboring functional presynaptic boutons, resulting in new synapses. Although glutamate serves as a trigger, how this behavior is regulated is unknown. As astrocytes control extracellular glutamate levels through their high‐affinity uptake transporters, together with their privileged access to synapses, we investigated a role for astrocytes in SHP formation. Using time‐lapse confocal microscopy, we found that the volume overlap between spines and astrocytic processes decreased during the formation of SHPs. Focal application of glutamate also reduced spine‐astrocyte overlap and induced SHPs. Importantly, SHP formation was prevented by blocking glial glutamate transporters, suggesting that glial control of extracellular glutamate is important for SHP‐mediated plasticity of spines. Hence, the dynamic changes of both spines and astrocytes can rapidly modify synaptic connectivity.


PLOS ONE | 2013

DNA Methylation Mediates Persistent Epileptiform Activity In Vitro and In Vivo

Ziv Machnes; Tony C. T. Huang; Philip K.-Y. Chang; Raminder Gill; Nicholas Reist; Gabriella Dezsi; Ezgi Ozturk; François Charron; Terence J. O’Brien; Nigel C. Jones; R. Anne McKinney; Moshe Szyf

Epilepsy is a chronic brain disorder involving recurring seizures often precipitated by an earlier neuronal insult. The mechanisms that link the transient neuronal insult to the lasting state of epilepsy are unknown. Here we tested the possible role of DNA methylation in mediating long-term induction of epileptiform activity by transient kainic acid exposure using in vitro and in vivo rodent models. We analyzed changes in the gria2 gene, which encodes for the GluA2 subunit of the ionotropic glutamate, alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid receptor and is well documented to play a role in epilepsy. We show that kainic acid exposure for two hours to mouse hippocampal slices triggers methylation of a 5’ regulatory region of the gria2 gene. Increase in methylation persists one week after removal of the drug, with concurrent suppression of gria2 mRNA expression levels. The degree of kainic acid-induced hypermethylation of gria2 5’ region varies between individual slices and correlates with the changes in excitability induced by kainic acid. In a rat in vivo model of post kainic acid-induced epilepsy, we show similar hypermethylation of the 5’ region of gria2. Inter-individual variations in gria2 methylation, correlate with the frequency and intensity of seizures among epileptic rats. Luciferase reporter assays support a regulatory role for methylation of gria2 5’ region. Inhibition of DNA methylation by RG108 blocked kainic acid-induced hypermethylation of gria2 5’ region in hippocampal slice cultures and bursting activity. Our results suggest that DNA methylation of such genes as gria2 mediates persistent epileptiform activity and inter-individual differences in the epileptic response to neuronal insult and that pharmacological agents that block DNA methylation inhibit epileptiform activity raising the prospect of DNA methylation inhibitors in epilepsy therapeutics.


Biomacromolecules | 2015

Dendritic Polyglycerol Sulfate Inhibits Microglial Activation and Reduces Hippocampal CA1 Dendritic Spine Morphology Deficits.

Dusica Maysinger; Dominic Gröger; Andrew Lake; Kai Licha; Marie Weinhart; Philip K.-Y. Chang; Rose Mulvey; Rainer Haag; R. Anne McKinney

Hyperactivity of microglia and loss of functional circuitry is a common feature of many neurological disorders including those induced or exacerbated by inflammation. Herein, we investigate the response of microglia and changes in hippocampal dendritic postsynaptic spines by dendritic polyglycerol sulfate (dPGS) treatment. Mouse microglia and organotypic hippocampal slices were exposed to dPGS and an inflammogen (lipopolysaccharides). Measurements of intracellular fluorescence and confocal microscopic analyses revealed that dPGS is avidly internalized by microglia but not CA1 pyramidal neurons. Concentration and time-dependent response studies consistently showed no obvious toxicity of dPGS. The adverse effects induced by proinflammogen LPS exposure were reduced and dendritic spine morphology was normalized with the addition of dPGS. This was accompanied by a significant reduction in nitrite and proinflammatory cytokines (TNF-α and IL-6) from hyperactive microglia suggesting normalized circuitry function with dPGS treatment. Collectively, these results suggest that dPGS acts anti-inflammatory, inhibits inflammation-induced degenerative changes in microglia phenotype and rescues dendritic spine morphology.


European Journal of Neuroscience | 2013

Blocking brain-derived neurotrophic factor inhibits injury-induced hyperexcitability of hippocampal CA3 neurons

Raminder Gill; Philip K.-Y. Chang; George A. Prenosil; Emily C. Deane; Rebecca Anne McKinney

Brain trauma can disrupt synaptic connections, and this in turn can prompt axons to sprout and form new connections. If these new axonal connections are aberrant, hyperexcitability can result. It has been shown that ablating tropomyosin‐related kinase B (TrkB), a receptor for brain‐derived neurotrophic factor (BDNF), can reduce axonal sprouting after hippocampal injury. However, it is unknown whether inhibiting BDNF‐mediated axonal sprouting will reduce hyperexcitability. Given this, our purpose here was to determine whether pharmacologically blocking BDNF inhibits hyperexcitability after injury‐induced axonal sprouting in the hippocampus. To induce injury, we made Schaffer collateral lesions in organotypic hippocampal slice cultures. As reported by others, we observed a 50% reduction in axonal sprouting in cultures treated with a BDNF blocker (TrkB‐Fc) 14 days after injury. Furthermore, lesioned cultures treated with TrkB‐Fc were less hyperexcitable than lesioned untreated cultures. Using electrophysiology, we observed a two‐fold decrease in the number of CA3 neurons that showed bursting responses after lesion with TrkB‐Fc treatment, whereas we found no change in intrinsic neuronal firing properties. Finally, evoked field excitatory postsynaptic potential recordings indicated an increase in network activity within area CA3 after lesion, which was prevented with chronic TrkB‐Fc treatment. Taken together, our results demonstrate that blocking BDNF attenuates injury‐induced hyperexcitability of hippocampal CA3 neurons. Axonal sprouting has been found in patients with post‐traumatic epilepsy. Therefore, our data suggest that blocking the BDNF–TrkB signaling cascade shortly after injury may be a potential therapeutic target for the treatment of post‐traumatic epilepsy.


European Journal of Neuroscience | 2014

Prolonged ampakine exposure prunes dendritic spines and increases presynaptic release probability for enhanced long-term potentiation in the hippocampus.

Philip K.-Y. Chang; George A. Prenosil; David Verbich; Raminder Gill; R. Anne McKinney

CX 546, an allosteric positive modulator of α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid‐type ionotropic glutamate receptors (AMPARs), belongs to a drug class called ampakines. These compounds have been shown to enhance long‐term potentiation (LTP), a cellular model of learning and memory, and improve animal learning task performance, and have augmented cognition in neurodegenerative patients. However, the chronic effect of CX546 on synaptic structures has not been examined. The structure and integrity of dendritic spines are thought to play a role in learning and memory, and their abnormalities have been implicated in cognitive disorders. In addition, their structural plasticity has been shown to be important for cognitive function, such that dendritic spine remodeling has been proposed as the morphological correlate for LTP. Here, we tested the effect of CX546 on dendritic spine remodeling following long‐term treatment. We found that, with prolonged CX546 treatment, organotypic hippocampal slice cultures showed a significant reduction in CA3–CA1 excitatory synapse and spine density. Electrophysiological approaches revealed that the CA3–CA1 circuitry compensates for this synapse loss by increasing synaptic efficacy through enhancement of presynaptic release probability. CX546‐treated slices showed prolonged and enhanced potentiation upon LTP induction. Furthermore, structural plasticity, namely spine head enlargement, was also more pronounced after CX546 treatment. Our results suggest a concordance of functional and structural changes that is enhanced with prolonged CX546 exposure. Thus, the improved cognitive ability of patients receiving ampakine treatment may result from the priming of synapses through increases in the structural plasticity and functional reliability of hippocampal synapses.


Scientific Reports | 2015

Aβ42-oligomer Interacting Peptide (AIP) neutralizes toxic amyloid-β42 species and protects synaptic structure and function

Christian Barucker; Heiko J. Bittner; Philip K.-Y. Chang; Scott Cameron; Mark A. Hancock; Filip Liebsch; Shireen Hossain; Anja Harmeier; Hunter Shaw; François Charron; Manuel Gensler; Paul Dembny; Wei Zhuang; Dietmar Schmitz; Jürgen P. Rabe; Yong Rao; Rudi Lurz; Peter W. Hildebrand; R. Anne McKinney; Gerhard Multhaup

The amyloid-β42 (Aβ42) peptide is believed to be the main culprit in the pathogenesis of Alzheimer disease (AD), impairing synaptic function and initiating neuronal degeneration. Soluble Aβ42 oligomers are highly toxic and contribute to progressive neuronal dysfunction, loss of synaptic spine density, and affect long-term potentiation (LTP). We have characterized a short, L-amino acid Aβ-oligomer Interacting Peptide (AIP) that targets a relatively well-defined population of low-n Aβ42 oligomers, rather than simply inhibiting the aggregation of Aβ monomers into oligomers. Our data show that AIP diminishes the loss of Aβ42-induced synaptic spine density and rescues LTP in organotypic hippocampal slice cultures. Notably, the AIP enantiomer (comprised of D-amino acids) attenuated the rough-eye phenotype in a transgenic Aβ42 fly model and significantly improved the function of photoreceptors of these flies in electroretinography tests. Overall, our results indicate that specifically “trapping” low-n oligomers provides a novel strategy for toxic Aβ42-oligomer recognition and removal.


ACS Chemical Neuroscience | 2017

Dendritic Polyglycerol Sulfates in the Prevention of Synaptic Loss and Mechanism of Action on Glia

Dusica Maysinger; Jeff Ji; Alexandre Moquin; Shireen Hossain; Mark A. Hancock; Issan Zhang; Philip K.-Y. Chang; Matthew Rigby; Madeleine Anthonisen; Peter Grutter; John C.S. Breitner; R. Anne McKinney; Sabine Reimann; Rainer Haag; Gerhard Multhaup

Dendritic polyglycerols (dPG), particularly dendritic polyglycerol sulfates (dPGS), have been intensively studied due to their intrinsic anti-inflammatory activity. As related to brain pathologies involving neuroinflammation, the current study examined if dPG and dPGS can (i) regulate neuroglial activation, and (ii) normalize the morphology and function of excitatory postsynaptic dendritic spines adversely affected by the neurotoxic 42 amino acid amyloid-β (Aβ42) peptide of Alzheimer disease (AD). The exact role of neuroglia, such as microglia and astrocytes, remains controversial especially their positive and negative impact on inflammatory processes in AD. To test dPGS effectiveness in AD models we used primary neuroglia and organotypic hippocampal slice cultures exposed to Aβ42 peptide. Overall, our data indicate that dPGS is taken up by both microglia and astrocytes in a concentration- and time-dependent manner. The mechanism of action of dPGS involves binding to Aβ42, i.e., a direct interaction between dPGS and Aβ42 species interfered with Aβ fibril formation and reduced the production of the neuroinflammagen lipocalin-2 (LCN2) mainly in astrocytes. Moreover, dPGS normalized the impairment of neuroglia and prevented the loss of dendritic spines at excitatory synapses in the hippocampus. In summary, dPGS has desirable therapeutic properties that may help reduce amyloid-induced neuroinflammation and neurotoxicity in AD.


The Journal of Physiology | 2018

Altered synaptic and firing properties of cerebellar Purkinje cells in a mouse model of ARSACS

Visou Ady; Brenda Toscano-Márquez; Moushumi Nath; Philip K.-Y. Chang; Jeanette Hui; Anna Cook; François Charron; Roxanne Larivière; Bernard Brais; R. Anne McKinney; Alanna J. Watt

Autosomal recessive spastic ataxia of Charlevoix–Saguenay (ARSACS) is an early‐onset neurodegenerative human disease characterized in part by ataxia and Purkinje cell loss in anterior cerebellar lobules. A knock‐out mouse model has been developed that recapitulates several features of ARSACS. Using this ARSACS mouse model, we report changes in synaptic input and intrinsic firing in cerebellar Purkinje cells, as well as in their synaptic output in the deep cerebellar nuclei. Changes in firing are observed in anterior lobules that later exhibit Purkinje cell death, but not in posterior lobules that do not. Our results show that both synaptic and intrinsic alterations in Purkinje cell properties likely contribute to disease manifestation in ARSACS; these findings resemble pathophysiological changes reported in several other ataxias.

Collaboration


Dive into the Philip K.-Y. Chang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernard Brais

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge