Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philip Levis is active.

Publication


Featured researches published by Philip Levis.


international conference on embedded networked sensor systems | 2003

TOSSIM: accurate and scalable simulation of entire TinyOS applications

Philip Levis; Nelson Lee; Matt Welsh; David E. Culler

Accurate and scalable simulation has historically been a key enabling factor for systems research. We present TOSSIM, a simulator for TinyOS wireless sensor networks. By exploiting the sensor network domain and TinyOSs design, TOSSIM can capture network behavior at a high fidelity while scaling to thousands of nodes. By using a probabilistic bit error model for the network, TOSSIM remains simple and efficient, but expressive enough to capture a wide range of network interactions. Using TOSSIM, we have discovered several bugs in TinyOS, ranging from network bit-level MAC interactions to queue overflows in an ad-hoc routing protocol. Through these and other evaluations, we show that detailed, scalable sensor network simulation is possible.


Archive | 2005

TinyOS: An Operating System for Sensor Networks

Philip Levis; Samuel Madden; Robert Szewczyk; Kamin Whitehouse; Alec Woo; Jason L. Hill; Matt Welsh; Eric A. Brewer; David E. Culler

We present TinyOS, a flexible, application-specific operating system for sensor networks, which form a core component of ambient intelligence systems. Sensor networks consist of (potentially) thousands of tiny, low-power nodes, each of which execute concurrent, reactive programs that must operate with severe memory and power constraints. The sensor network challenges of limited resources, event-centric concurrent applications, and low-power operation drive the design of TinyOS. Our solution combines flexible, fine-grain components with an execution model that supports complex yet safe concurrent operations. TinyOS meets these challenges well and has become the platform of choice for sensor network research; it is in use by over a hundred groups worldwide, and supports a broad range of applications and research topics. We provide a qualitative and quantitative evaluation of the system, showing that it supports complex, concurrent programs with very low memory requirements (many applications fit within 16KB of memory, and the core OS is 400 bytes) and efficient, low-power operation.We present our experiences with TinyOS as a platform for sensor network innovation and applications.


acm/ieee international conference on mobile computing and networking | 2010

Achieving single channel, full duplex wireless communication

Jung-Il Choi; Mayank Jain; Kannan Srinivasan; Philip Levis; Sachin Katti

This paper discusses the design of a single channel full-duplex wireless transceiver. The design uses a combination of RF and baseband techniques to achieve full-duplexing with minimal effect on link reliability. Experiments on real nodes show the full-duplex prototype achieves median performance that is within 8% of an ideal full-duplexing system. This paper presents Antenna Cancellation, a novel technique for self-interference cancellation. In conjunction with existing RF interference cancellation and digital baseband interference cancellation, antenna cancellation achieves the amount of self-interference cancellation required for full-duplex operation. The paper also discusses potential MAC and network gains with full-duplexing. It suggests ways in which a full-duplex system can solve some important problems with existing wireless systems including hidden terminals, loss of throughput due to congestion, and large end-to-end delays.


acm/ieee international conference on mobile computing and networking | 2011

Practical, real-time, full duplex wireless

Mayank Jain; Jung-Il Choi; Tae Min Kim; Dinesh Bharadia; Siddharth Seth; Kannan Srinivasan; Philip Levis; Sachin Katti; Prasun Sinha

This paper presents a full duplex radio design using signal inversion and adaptive cancellation. Signal inversion uses a simple design based on a balanced/unbalanced (Balun) transformer. This new design, unlike prior work, supports wideband and high power systems. In theory, this new design has no limitation on bandwidth or power. In practice, we find that the signal inversion technique alone can cancel at least 45dB across a 40MHz bandwidth. Further, combining signal inversion cancellation with cancellation in the digital domain can reduce self-interference by up to 73dB for a 10MHz OFDM signal. This paper also presents a full duplex medium access control (MAC) design and evaluates it using a testbed of 5 prototype full duplex nodes. Full duplex reduces packet losses due to hidden terminals by up to 88%. Full duplex also mitigates unfair channel allocation in AP-based networks, increasing fairness from 0.85 to 0.98 while improving downlink throughput by 110% and uplink throughput by 15%. These experimental results show that a re- design of the wireless network stack to exploit full duplex capability can result in significant improvements in network performance.


Proceedings of the National Academy of Sciences of the United States of America | 2010

A high-resolution human contact network for infectious disease transmission

Marcel Salathé; Maria A. Kazandjieva; Jung Woo Lee; Philip Levis; Marcus W. Feldman; James Holland Jones

The most frequent infectious diseases in humans—and those with the highest potential for rapid pandemic spread—are usually transmitted via droplets during close proximity interactions (CPIs). Despite the importance of this transmission route, very little is known about the dynamic patterns of CPIs. Using wireless sensor network technology, we obtained high-resolution data of CPIs during a typical day at an American high school, permitting the reconstruction of the social network relevant for infectious disease transmission. At 94% coverage, we collected 762,868 CPIs at a maximal distance of 3 m among 788 individuals. The data revealed a high-density network with typical small-world properties and a relatively homogeneous distribution of both interaction time and interaction partners among subjects. Computer simulations of the spread of an influenza-like disease on the weighted contact graph are in good agreement with absentee data during the most recent influenza season. Analysis of targeted immunization strategies suggested that contact network data are required to design strategies that are significantly more effective than random immunization. Immunization strategies based on contact network data were most effective at high vaccination coverage.


IEEE Communications Magazine | 2014

Applications of self-interference cancellation in 5G and beyond

Steven Hong; Joel Brand; Jung-Il Choi; Mayank Jain; Jeffrey Mehlman; Sachin Katti; Philip Levis

Self-interference cancellation invalidates a long-held fundamental assumption in wireless network design that radios can only operate in half duplex mode on the same channel. Beyond enabling true in-band full duplex, which effectively doubles spectral efficiency, self-interference cancellation tremendously simplifies spectrum management. Not only does it render entire ecosystems like TD-LTE obsolete, it enables future networks to leverage fragmented spectrum, a pressing global issue that will continue to worsen in 5G networks. Self-interference cancellation offers the potential to complement and sustain the evolution of 5G technologies toward denser heterogeneous networks and can be utilized in wireless communication systems in multiple ways, including increased link capacity, spectrum virtualization, any-division duplexing (ADD), novel relay solutions, and enhanced interference coordination. By virtue of its fundamental nature, self-interference cancellation will have a tremendous impact on 5G networks and beyond.


international conference on embedded networked sensor systems | 2008

The β-factor: measuring wireless link burstiness

Kannan Srinivasan; Maria A. Kazandjieva; Saatvik Agarwal; Philip Levis

Measuring 802.15.4 reception in three testbeds, we find that most intermediate links are bursty: they shift between poor and good delivery. We present a metric to measure this link burstiness and name it β. We find that link burstiness affects protocol performance and that β can predict the effects. We show that measuring β allows us to reason about how long a protocol should pause after encountering a packet failure to reduce its transmission cost. We find that using β as a guide to setting a single constant in a standard sensor network data collection protocol reduces its average transmission cost by 15%. In addition to data from 802.15.4 testbeds, we examine traces from 802.11b networks and find β has a broader relevance in the wireless domain.


ACM Transactions on Sensor Networks | 2010

An empirical study of low-power wireless

Kannan Srinivasan; Prabal Dutta; Arsalan Tavakoli; Philip Levis

We present empirical measurements of the packet delivery performance of the latest sensor platforms: Micaz and Telos motes. In this article, we present observations that have implications to a set of common assumptions protocol designers make while designing sensornet protocols—specifically—the MAC and network layer protocols. We first distill these common assumptions in to a conceptual model and show how our observations support or dispute these assumptions. We also present case studies of protocols that do not make these assumptions. Understanding the implications of these observations to the conceptual model can improve future protocol designs.


international conference on embedded networked sensor systems | 2007

Flush: a reliable bulk transport protocol for multihop wireless networks

Sukun Kim; Rodrigo Fonseca; Prabal Dutta; Arsalan Tavakoli; David E. Culler; Philip Levis; Scott Shenker; Ion Stoica

We present Flush, a reliable, high goodput bulk data transport protocol for wireless sensor networks. Flush provides end-to-end reliability, reduces transfer time, and adapts to time-varying network conditions. It achieves these properties using end-to-end acknowledgments, implicit snooping of control information, and a rate-control algorithm that operates at each hop along a flow. Using several real network topologies, we show that Flush closely tracks or exceeds the maximum goodput achievable by a hand-tuned but fixed rate for each hop over a wide range of path lengths and varying network conditions. Flush is scalable; its effective bandwidth over a 48-hop wireless network is approximately one-third of the rate achievable over one hop. The design of Flush is simplified by assuming that different flows do not interfere with each other, a reasonable restriction for many sensornet applications that collect bulk data in a coordinated fashion, like structural health monitoring, volcanic activity monitoring, or protocol evaluation. We collected all of the performance data presented in this paper using Flush itself.


information processing in sensor networks | 2007

Improving wireless simulation through noise modeling

HyungJune Lee; Alberto E. Cerpa; Philip Levis

We propose modeling environmental noise in order to efficiently and accurately simulate wireless packet delivery. We measure noise traces in many different environments and propose three algorithms to simulate noise from these traces. We evaluate applying these algorithms to signal-to-noise curves in comparison to existing simulation approaches used in EmStar, TOSSIM, and ns2. We measure simulation accuracy using the Kantorovich-Wasserstein distance on conditional packet delivery functions. We demonstrate that using a closest-fit pattern matching (CPM) noise model can capture complex temporal dynamics which existing approaches do not, increasing packet simulation fidelity by a factor of 2 for good links, a factor of 1.5 for bad links, and a factor of 5 for intermediate links. As our models are derived from real-world traces, they can be generated for many different environments.

Collaboration


Dive into the Philip Levis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Prabal Dutta

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott Shenker

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge