Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philip Petteruti is active.

Publication


Featured researches published by Philip Petteruti.


ACS Chemical Biology | 2013

Discovery and mechanistic study of a small molecule inhibitor for motor protein KIFC1.

Jiaquan Wu; Keith Mikule; Wenxian Wang; Nancy Su; Philip Petteruti; Farzin Gharahdaghi; Erin Code; Xiahui Zhu; Kelly Jacques; Zhongwu Lai; Bin Yang; Michelle Lamb; Claudio Chuaqui; Nicholas Keen; Huawei Chen

Centrosome amplification is observed in many human cancers and has been proposed to be a driver of both genetic instability and tumorigenesis. Cancer cells have evolved mechanisms to bundle multiple centrosomes into two spindle poles to avoid multipolar mitosis that can lead to chromosomal segregation defects and eventually cell death. KIFC1, a kinesin-14 family protein, plays an essential role in centrosomal bundling in cancer cells, but its function is not required for normal diploid cell division, suggesting that KIFC1 is an attractive therapeutic target for human cancers. To this end, we have identified the first reported small molecule inhibitor AZ82 for KIFC1. AZ82 bound specifically to the KIFC1/microtubule (MT) binary complex and inhibited the MT-stimulated KIFC1 enzymatic activity in an ATP-competitive and MT-noncompetitive manner with a Ki of 0.043 μM. AZ82 effectively engaged with the minus end-directed KIFC1 motor inside cells to reverse the monopolar spindle phenotype induced by the inhibition of the plus end-directed kinesin Eg5. Treatment with AZ82 caused centrosome declustering in BT-549 breast cancer cells with amplified centrosomes. Consistent with genetic studies, our data confirmed that KIFC1 inhibition by a small molecule holds promise for targeting cancer cells with amplified centrosomes and provided evidence that functional suppression of KIFC1 by inhibiting its enzymatic activity could be an effective means for developing cancer therapeutics.


Molecular Cancer Therapeutics | 2012

MEDI0639: a novel therapeutic antibody targeting Dll4 modulates endothelial cell function and angiogenesis in vivo

David Jenkins; Sarah Ross; Margaret Veldman-Jones; Ian Foltz; Brandon C. P. Clavette; Kathy Manchulenko; Cath Eberlein; Jane Kendrew; Philip Petteruti; Song Cho; Melissa Damschroder; Li Peng; Dawn Baker; Neil R. Smith; Hazel M. Weir; David C. Blakey; Vahe Bedian; Simon T. Barry

The Notch signaling pathway has been implicated in cell fate determination and differentiation in many tissues. Accumulating evidence points toward a pivotal role in blood vessel formation, and the importance of the Delta-like ligand (Dll) 4-Notch1 ligand–receptor interaction has been shown in both physiological and tumor angiogenesis. Disruption of this interaction leads to a reduction in tumor growth as a result of an increase in nonfunctional vasculature leading to poor perfusion of the tumor. MEDI0639 is an investigational human therapeutic antibody that targets Dll4 to inhibit the interaction between Dll4 and Notch1. The antibody cross-reacts to cynomolgus monkey but not mouse species orthologues. In vitro MEDI0639 inhibits the binding of Notch1 to Dll4, interacting via a novel epitope that has not been previously described. Binding to this epitope translates into MEDI0639 reversing Notch1-mediated suppression of human umbilical vein endothelial cell growth in vitro. MEDI0639 administration resulted in stimulation of tubule formation in a three-dimensional (3D) endothelial cell outgrowth assay, a phenotype driven by disruption of the Dll4-Notch signaling axis. In contrast, in a two-dimensional endothelial cell–fibroblast coculture model, MEDI0639 is a potent inhibitor of tubule formation. In vivo, MEDI0639 shows activity in a human endothelial cell angiogenesis assay promoting human vessel formation and reducing the number of vessels with smooth muscle actin-positive mural cells coverage. Collectively, the data show that MEDI0639 is a potent modulator of Dll4-Notch signaling pathway. Mol Cancer Ther; 11(8); 1650–60. ©2012 AACR.


Nature Chemical Biology | 2016

Potent and selective bivalent inhibitors of BET bromodomains

Michael J. Waring; Huawei Chen; Alfred A. Rabow; Graeme Walker; Romel Bobby; Scott Boiko; Rob H. Bradbury; Rowena Callis; Edwin Clark; Ian L. Dale; Danette L. Daniels; Austin Dulak; Liz Flavell; Geoff Holdgate; Thomas A. Jowitt; Alexey Kikhney; Mark S. McAlister; Jacqui Mendez; Derek Ogg; Joe Patel; Philip Petteruti; Graeme R. Robb; Matthew B. Robers; Sakina Saif; Natalie Stratton; Dmitri I. Svergun; Wenxian Wang; David Whittaker; David Wilson; Yi Yao

Proteins of the bromodomain and extraterminal (BET) family, in particular bromodomain-containing protein 4 (BRD4), are of great interest as biological targets. BET proteins contain two separate bromodomains, and existing inhibitors bind to them monovalently. Here we describe the discovery and characterization of probe compound biBET, capable of engaging both bromodomains simultaneously in a bivalent, in cis binding mode. The evidence provided here was obtained in a variety of biophysical and cellular experiments. The bivalent binding results in very high cellular potency for BRD4 binding and pharmacological responses such as disruption of BRD4-mediator complex subunit 1 foci with an EC50 of 100 pM. These compounds will be of considerable utility as BET/BRD4 chemical probes. This work illustrates a novel concept in ligand design-simultaneous targeting of two separate domains with a drug-like small molecule-providing precedent for a potentially more effective paradigm for developing ligands for other multi-domain proteins.


Molecular Cancer Therapeutics | 2016

AZD5153: a novel bivalent BET bromodomain inhibitor highly active against hematologic malignancies

Garrett W. Rhyasen; Maureen Hattersley; Yi Yao; Austin Dulak; Wenxian Wang; Philip Petteruti; Ian L. Dale; Scott Boiko; Tony Cheung; Jingwen Zhang; Shenghua Wen; Lillian Castriotta; Deborah Lawson; Mike Collins; Larry Bao; Miika Ahdesmaki; Graeme Walker; Greg O'Connor; Tammie C. Yeh; Alfred A. Rabow; Jonathan R. Dry; Corinne Reimer; Paul Lyne; Gordon B. Mills; Stephen Fawell; Michael J. Waring; Michael Zinda; Edwin Clark; Huawei Chen

The bromodomain and extraterminal (BET) protein BRD4 regulates gene expression via recruitment of transcriptional regulatory complexes to acetylated chromatin. Pharmacological targeting of BRD4 bromodomains by small molecule inhibitors has proven to be an effective means to disrupt aberrant transcriptional programs critical for tumor growth and/or survival. Herein, we report AZD5153, a potent, selective, and orally available BET/BRD4 bromodomain inhibitor possessing a bivalent binding mode. Unlike previously described monovalent inhibitors, AZD5153 ligates two bromodomains in BRD4 simultaneously. The enhanced avidity afforded through bivalent binding translates into increased cellular and antitumor activity in preclinical hematologic tumor models. In vivo administration of AZD5153 led to tumor stasis or regression in multiple xenograft models of acute myeloid leukemia, multiple myeloma, and diffuse large B-cell lymphoma. The relationship between AZD5153 exposure and efficacy suggests that prolonged BRD4 target coverage is a primary efficacy driver. AZD5153 treatment markedly affects transcriptional programs of MYC, E2F, and mTOR. Of note, mTOR pathway modulation is associated with cell line sensitivity to AZD5153. Transcriptional modulation of MYC and HEXIM1 was confirmed in AZD5153-treated human whole blood, thus supporting their use as clinical pharmacodynamic biomarkers. This study establishes AZD5153 as a highly potent, orally available BET/BRD4 inhibitor and provides a rationale for clinical development in hematologic malignancies. Mol Cancer Ther; 15(11); 2563–74. ©2016 AACR.


Bioorganic & Medicinal Chemistry Letters | 2015

Discovery of AZ0108, an orally bioavailable phthalazinone PARP inhibitor that blocks centrosome clustering

Jeffrey W. Johannes; Lynsie Almeida; Kevin Daly; Andrew D. Ferguson; Shaun Grosskurth; Huiping Guan; Tina Howard; Stephanos Ioannidis; Steven Kazmirski; Michelle Lamb; Nicholas A. Larsen; Paul Lyne; Keith Mikule; Claude Ogoe; Bo Peng; Philip Petteruti; Jon Read; Nancy Su; Mark Sylvester; Scott Throner; Wenxian Wang; Xin Wang; Jiaquan Wu; Qing Ye; Yan Yu; Xiaolan Zheng; David Scott

The propensity for cancer cells to accumulate additional centrosomes relative to normal cells could be exploited for therapeutic benefit in oncology. Following literature reports that suggested TNKS1 (tankyrase 1) and PARP16 may be involved with spindle structure and function and may play a role in suppressing multi-polar spindle formation in cells with supernumerary centrosomes, we initiated a phenotypic screen to look for small molecule poly (ADP-ribose) polymerase (PARP) enzyme family inhibitors that could produce a multi-polar spindle phenotype via declustering of centrosomes. Screening of AstraZenecas collection of phthalazinone PARP inhibitors in HeLa cells using high-content screening techniques identified several compounds that produced a multi-polar spindle phenotype at low nanomolar concentrations. Characterization of these compounds across a broad panel of PARP family enzyme assays indicated that they had activity against several PARP family enzymes, including PARP1, 2, 3, 5a, 5b, and 6. Further optimization of these initial hits for improved declustering potency, solubility, permeability, and oral bioavailability resulted in AZ0108, a PARP1, 2, 6 inhibitor that potently inhibits centrosome clustering and is suitable for in vivo efficacy and tolerability studies.


Clinical Cancer Research | 2017

Identification of CCR2 and CD180 as Robust Pharmacodynamic Tumor and Blood Biomarkers for Clinical Use with BRD4/BET Inhibitors

Tammie C. Yeh; Greg O'Connor; Philip Petteruti; Austin Dulak; Maureen Hattersley; J. Carl Barrett; Huawei Chen

Purpose: AZD5153 is a novel BRD4/BET inhibitor with a distinctive bivalent bromodomain binding mode. To support its clinical development, we identified pharmacodynamic (PD) biomarkers for use in clinical trials to establish target engagement. Experimental Design: CCR2 and CD180 mRNAs, initially identified from whole transcriptome profiling, were further evaluated by quantitative PCR in hematologic cell lines, xenografts, and whole blood from rat, healthy volunteers, and patients with cancer. MYC and HEXIM1 mRNAs were also evaluated. Results: RNA-sequencing data showed consistent decreases in CCR2/CD180 expression across multiple hematologic cell lines upon AZD5153 treatment. Evaluation of dose dependence in MV4,11 cells confirmed activity at clinically relevant concentrations. In vivo downregulation of CCR2/CD180 mRNAs (>80%) was demonstrated in MV4,11 and KMS-11 xenograft tumors at efficacious AZD5153 doses. Consistent with in vitro rat blood data, an in vivo rat study confirmed greater inhibition of CCR2/CD180 mRNA in whole blood versus MYC at an efficacious dose. Finally, in vitro treatment of whole blood from healthy volunteers and patients with cancer demonstrated, in contrast to MYC, almost complete downregulation of CCR2/CD180 at predicted clinically achievable concentrations. Conclusions: Our data strongly support the use of CCR2 and CD180 mRNAs as whole blood PD biomarkers for BRD4 inhibitors, especially in situations where paired tumor biopsies are unavailable. In addition, they can be used as tumor-based PD biomarkers for hematologic tumors. MYC mRNA is useful as a hematologic tumor-based biomarker but suboptimal as a whole blood biomarker. Utility of HEXIM1 mRNA may be limited to higher concentrations. Clin Cancer Res; 23(4); 1025–35. ©2017 AACR.


Molecular Cancer Therapeutics | 2013

Abstract A221: Novel PARP6 inhibitors demonstrate in vivo efficacy in xenograft models.

Michele Mayo; Shaun Grosskurth; Xin Wang; Philip Petteruti; Prasad Nadella; Corinne Reimer; Keith Mikule

The poly (ADP-ribose) polymerase (PARP) family of enzymes are functionally implicated in DNA repair, transcriptional regulation, glucose metabolism, mitosis, and other cellular mechanisms. To date, the focus has been on defining the role of PARPs 1-3 in DNA damage repair. Currently, PARP1-3 inhibitors are in clinical trials for BRCA1/2 mutant ovarian and breast cancers. The roles of other PARP family members are starting to emerge. Using a cell-based assay measuring multi-polar spindle induction, PARP6 was identified as novel target with therapeutic potential. AZ482 and AZ108 were developed as potent PARP6 inhibitors. These compounds exhibited a unique and selective growth inhibition profile when screened in large panels of tumor cells and suitable pharmacokinetics in vivo. In sensitive hematological and solid tumor models, these compounds had low nanomolar potency in vitro and anti-tumor efficacy in vivo. Mechanistic studies suggest PARP6 inhibitors disrupt spindle pole clustering resulting in mitotic catastrophe and may show selectivity toward tumor cell lines with supernumary centrosomes. Citation Information: Mol Cancer Ther 2013;12(11 Suppl):A221. Citation Format: Michele F. Mayo, Shaun Grosskurth, Xin Wang, Philip Petteruti, Prasad Nadella, Corinne Reimer, Keith Mikule. Novel PARP6 inhibitors demonstrate in vivo efficacy in xenograft models. [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2013 Oct 19-23; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2013;12(11 Suppl):Abstract nr A221.


Molecular Cancer Therapeutics | 2013

Abstract A134: Functional perturbation of PARP6 affects centromeric proteins and is associated with increased multi-polar spindles in breast cancer cell lines.

Shaun Grosskurth; Philip Petteruti; Xin Wang; Keith Mikule

Poly(ADP-ribose) polymerases (PARP) are a family of 17 enzymes that catalyze the transfer of the ADP-ribose from NADH to post-translationally modify (PTM) acceptor proteins. Currently, the PTM regulation of proteins by PARPs have been demonstrated to regulate numerous signaling cascades including but not limited to DNA damage response and tumor development for PARP1-3 as well as telomere maintenance, spindle assembly, vesicular movement, and regulation of beta-catenin destruction complex for PARP5a-5b. Although progress on the biological role and therapeutic potential for some PARPs has been made, the function of and possible therapeutic application for other PARPs are not fully understood. Using cell free enzyme and cell-base multi-polar spindle assays, semi-selective PARP6 inhibitors AZ482 and AZ108 were identified. From in vitro PARP6 knock-down and AZ108 pharmacological studies in breast cancer cell lines, PARP6 perturbation was demonstrated to disrupt spindle pole clustering. To identify PARP6 protein substrate that may contribute to the spindle pole clustering defect, an in vitro acceptor protein substrate screen was performed using high-density protein microarrays containing more than 8,000 unique proteins. From this screen, an enrichment for centromeric and microtubule organizing proteins was identified. Of these centromeric PARP6 protein substrate, CHEK1 and CENP were shown to be modulated by AZ108 treatment in breast cancer cell lines. These results implicate PARP6 in a role for stablization of the spindle assembly during mitosis. Citation Information: Mol Cancer Ther 2013;12(11 Suppl):A134. Citation Format: SHAUN GROSSKURTH, Philip Petteruti, Xin Wang, Keith Mikule. Functional perturbation of PARP6 affects centromeric proteins and is associated with increased multi-polar spindles in breast cancer cell lines. [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2013 Oct 19-23; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2013;12(11 Suppl):Abstract nr A134.


ACS Chemical Biology | 2018

Development of a Novel B-Cell Lymphoma 6 (BCL6) PROTAC To Provide Insight into Small Molecule Targeting of BCL6

William Mccoull; Tony Cheung; Erica Anderson; Peter Barton; Jonathan Burgess; Kate Byth; Qing Cao; M. Paola Castaldi; Huawei Chen; Elisabetta Chiarparin; Rodrigo J. Carbajo; Erin Code; Suzanna Cowan; Paul R.J. Davey; Andrew D. Ferguson; Shaun Fillery; Nathan O. Fuller; Ning Gao; David Hargreaves; Martin R. Howard; Jun Hu; Aarti Kawatkar; Paul D. Kemmitt; Elisabetta Leo; Daniel M. Molina; Nichole O’Connell; Philip Petteruti; Timothy Rasmusson; Piotr Raubo; Philip Rawlins

B-cell lymphoma 6 (BCL6) inhibition is a promising mechanism for treating hematological cancers but high quality chemical probes are necessary to evaluate its therapeutic potential. Here we report potent BCL6 inhibitors that demonstrate cellular target engagement and exhibit exquisite selectivity for BCL6 based on mass spectrometry analyses following chemical proteomic pull down. Importantly, a proteolysis-targeting chimera (PROTAC) was also developed and shown to significantly degrade BCL6 in a number of diffuse large B-cell lymphoma (DLBCL) cell lines, but neither BCL6 inhibition nor degradation selectively induced marked phenotypic response. To investigate, we monitored PROTAC directed BCL6 degradation in DLBCL OCI-Ly1 cells by immunofluorescence and discovered a residual BCL6 population. Analysis of subcellular fractions also showed incomplete BCL6 degradation in all fractions despite having measurable PROTAC concentrations, together providing a rationale for the weak antiproliferative response seen with both BCL6 inhibitor and degrader. In summary, we have developed potent and selective BCL6 inhibitors and a BCL6 PROTAC that effectively degraded BCL6, but both modalities failed to induce a significant phenotypic response in DLBCL despite achieving cellular concentrations.


Molecular Cancer Therapeutics | 2013

Abstract C55: Discovery and optimization of inhibitors of the KIFC1 motor protein.

Michelle Lamb; Jiaquan Wu; Keith Mikule; Wendy Wang; Nancy Su; Philip Petteruti; Farzin Gharahdaghi; Erin Code; Xiahui Zhu; Kelly Jacques; Zhongwu Lai; Tao Zhang; David Boulay; Gurmit Grewal; Nicholas Keen; Bin Yang; Claudio Chuaqui; Huawei Chen

KIFC1, a kinesin-14 family protein, plays an essential role in centrosomal bundling, a strategy employed by cancer cells to avoid multipolar mitosis in the presence of amplified centrosomes. However, its function is not required for normal diploid cell division, suggesting that KIFC1 is an attractive therapeutic target for human cancers. We have recently reported the first small molecule inhibitor of KIFC1, AZ82 [1]. AZ82 binds specifically to the KIFC1/microtubule (MT) binary complex, and inhibits the MT-stimulated KIFC1 enzymatic activity with a KI of 0.043 µM. AZ82 effectively engaged with the minus-end directed KIFC1 motor in HeLa cells to reverse the monopolar spindle phenotype induced by the inhibition of the plus end-directed kinesin Eg5 by AZD4877, consistent with what was observed with genetic knock down of KiFC1 by siRNA. Additionally, treatment with AZ82 caused centrosome declustering in BT-549 breast cancer cells with amplified centrosomes. Here we further describe the chemistry approach and related structure-activity relationships that led to the discovery of AZ82. [1] http://pubs.acs.org/doi/abs/10.1021/cb400186w Citation Information: Mol Cancer Ther 2013;12(11 Suppl):C55. Citation Format: Michelle L. Lamb, Jiaquan Wu, Keith Mikule, Wendy Wang, Nancy Su, Philip Petteruti, Farzin Gharahdaghi, Erin Code, Xiahui Zhu, Kelly Jacques, Zhongwu Lai, Tao Zhang, David Boulay, Gurmit Grewal, Nicholas Keen, Bin Yang, Claudio Chuaqui, Claudio Chuaqui, Huawei Chen. Discovery and optimization of inhibitors of the KIFC1 motor protein. [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2013 Oct 19-23; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2013;12(11 Suppl):Abstract nr C55.

Collaboration


Dive into the Philip Petteruti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge