Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philip W. Fowler is active.

Publication


Featured researches published by Philip W. Fowler.


The EMBO Journal | 2011

Crystal structure of a prokaryotic homologue of the mammalian oligopeptide-proton symporters, PepT1 and PepT2

Simon Newstead; David Drew; Alexander D. Cameron; Vincent L. G. Postis; Xiaobing Xia; Philip W. Fowler; Jean C. Ingram; Elisabeth P. Carpenter; Mark S.P. Sansom; Michael J. McPherson; Stephen A. Baldwin; So Iwata

PepT1 and PepT2 are major facilitator superfamily (MFS) transporters that utilize a proton gradient to drive the uptake of di‐ and tri‐peptides in the small intestine and kidney, respectively. They are the major routes by which we absorb dietary nitrogen and many orally administered drugs. Here, we present the crystal structure of PepTSo, a functionally similar prokaryotic homologue of the mammalian peptide transporters from Shewanella oneidensis. This structure, refined using data up to 3.6 Å resolution, reveals a ligand‐bound occluded state for the MFS and provides new insights into a general transport mechanism. We have located the peptide‐binding site in a central hydrophilic cavity, which occludes a bound ligand from both sides of the membrane. Residues thought to be involved in proton coupling have also been identified near the extracellular gate of the cavity. Based on these findings and associated kinetic data, we propose that PepTSo represents a sound model system for understanding mammalian peptide transport as catalysed by PepT1 and PepT2.


The EMBO Journal | 2012

Alternating access mechanism in the POT family of oligopeptide transporters

Nicolae Solcan; Jane Kwok; Philip W. Fowler; Alexander D. Cameron; David Drew; So Iwata; Simon Newstead

Short chain peptides are actively transported across membranes as an efficient route for dietary protein absorption and for maintaining cellular homeostasis. In mammals, peptide transport occurs via PepT1 and PepT2, which belong to the proton‐dependent oligopeptide transporter, or POT family. The recent crystal structure of a bacterial POT transporter confirmed that they belong to the major facilitator superfamily of secondary active transporters. Despite the functional characterization of POT family members in bacteria, fungi and mammals, a detailed model for peptide recognition and transport remains unavailable. In this study, we report the 3.3‐Å resolution crystal structure and functional characterization of a POT family transporter from the bacterium Streptococcus thermophilus. Crystallized in an inward open conformation the structure identifies a hinge‐like movement within the C‐terminal half of the transporter that facilitates opening of an intracellular gate controlling access to a central peptide‐binding site. Our associated functional data support a model for peptide transport that highlights the importance of salt bridge interactions in orchestrating alternating access within the POT family.


Journal of the Royal Society Interface | 2005

Modelling biological complexity: a physical scientist's perspective.

Peter V. Coveney; Philip W. Fowler

We discuss the modern approaches of complexity and self-organization to understanding dynamical systems and how these concepts can inform current interest in systems biology. From the perspective of a physical scientist, it is especially interesting to examine how the differing weights given to philosophies of science in the physical and biological sciences impact the application of the study of complexity. We briefly describe how the dynamics of the heart and circadian rhythms, canonical examples of systems biology, are modelled by sets of nonlinear coupled differential equations, which have to be solved numerically. A major difficulty with this approach is that all the parameters within these equations are not usually known. Coupled models that include biomolecular detail could help solve this problem. Coupling models across large ranges of length- and time-scales is central to describing complex systems and therefore to biology. Such coupling may be performed in at least two different ways, which we refer to as hierarchical and hybrid multiscale modelling. While limited progress has been made in the former case, the latter is only beginning to be addressed systematically. These modelling methods are expected to bring numerous benefits to biology, for example, the properties of a system could be studied over a wider range of length- and time-scales, a key aim of systems biology. Multiscale models couple behaviour at the molecular biological level to that at the cellular level, thereby providing a route for calculating many unknown parameters as well as investigating the effects at, for example, the cellular level, of small changes at the biomolecular level, such as a genetic mutation or the presence of a drug. The modelling and simulation of biomolecular systems is itself very computationally intensive; we describe a recently developed hybrid continuum-molecular model, HybridMD, and its associated molecular insertion algorithm, which point the way towards the integration of molecular and more coarse-grained representations of matter. The scope of such integrative approaches to complex systems research is circumscribed by the computational resources available. Computational grids should provide a step jump in the scale of these resources; we describe the tools that RealityGrid, a major UK e-Science project, has developed together with our experience of deploying complex models on nascent grids. We also discuss the prospects for mathematical approaches to reducing the dimensionality of complex networks in the search for universal systems-level properties, illustrating our approach with a description of the origin of life according to the RNA world view.


Biochemistry | 2008

Helix−Helix Interactions in Membrane Proteins: Coarse-Grained Simulations of Glycophorin A Helix Dimerization†

Emi Psachoulia; Philip W. Fowler; Peter J. Bond; Mark S.P. Sansom

Oligomerization of transmembrane (TM) helices is a key stage in the folding of membrane proteins. Glycophorin A (GpA) is a well-documented test system for this process. Coarse-grained molecular dynamics (CG-MD) allows us to simulate the self-assembly of TM helices into dimers, for both wild-type (WT) and mutant GpA sequences. For the WT sequences, dimers formed rapidly and remained stable in all simulations. The resultant dimers exhibited right-handed crossing and the same interhelix contacts as in NMR structures. Simulations of disruptive mutants revealed the dimers were less stable, with values of DeltaDelta G dimerization consistent with experimental data. The dimers of disruptive mutants were distorted relative to the WT and showed left-handed crossing of their helices. CG-MD can therefore be used to explore the interactions of TM helices, an important stage in the folding of membrane proteins. In particular, CG-MD has been shown to be sensitive enough to detect disruptions introduced by mutation. Future refinement of such models via atomistic simulations will enable a multiscale approach to predict the folding of membrane proteins.


Neuron | 2007

H Bonding at the Helix-Bundle Crossing Controls Gating in Kir Potassium Channels

Markus Rapedius; Philip W. Fowler; Lijun Shang; Mark S.P. Sansom; Stephen J. Tucker; Thomas Baukrowitz

Summary Specific stimuli such as intracellular H+ and phosphoinositides (e.g., PIP2) gate inwardly rectifying potassium (Kir) channels by controlling the reversible transition between the closed and open states. This gating mechanism underlies many aspects of Kir channel physiology and pathophysiology; however, its structural basis is not well understood. Here, we demonstrate that H+ and PIP2 use a conserved gating mechanism defined by similar structural changes in the transmembrane (TM) helices and the selectivity filter. Our data support a model in which the gating motion of the TM helices is controlled by an intrasubunit hydrogen bond between TM1 and TM2 at the helix-bundle crossing, and we show that this defines a common gating motif in the Kir channel superfamily. Furthermore, we show that this proposed H-bonding interaction determines Kir channel pH sensitivity, pH and PIP2 gating kinetics, as well as a K+-dependent inactivation process at the selectivity filter and therefore many of the key regulatory mechanisms of Kir channel physiology.


Biophysical Journal | 2008

The selectivity of K+ ion channels: testing the hypotheses.

Philip W. Fowler; Kaihsu Tai; Mark S.P. Sansom

How K(+) channels are able to conduct certain cations yet not others remains an important but unresolved question. The recent elucidation of the structure of NaK, an ion channel that conducts both Na(+) and K(+) ions, offers an opportunity to test the various hypotheses that have been put forward to explain the selectivity of K(+) ion channels. We test the snug-fit, field-strength, and over-coordination hypotheses by comparing their predictions to the results of classical molecular dynamics simulations of the K(+) selective channel KcsA and the less selective channel NaK embedded in lipid bilayers. Our results are incompatible with the so-called strong variant of the snug-fit hypothesis but are consistent with the over-coordination hypothesis and neither confirm nor refute the field-strength hypothesis. We also find that the ions and waters in the NaK selectivity filter unexpectedly move to a new conformation in seven K(+) simulations: the two K(+) ions rapidly move from site S4 to S2 and from the cavity to S4. At the same time, the selectivity filter narrows around sites S1 and S2 and the carbonyl oxygen atoms rotate 20 degrees -40 degrees inwards toward the ion. These motions diminish the large structural differences between the crystallographic structures of the selectivity filters of NaK and KcsA and appear to allow the binding of ions to S2 of NaK at physiological temperature.


Structure | 2015

Gating Topology of the Proton-Coupled Oligopeptide Symporters.

Philip W. Fowler; Marcella Orwick-Rydmark; Sebastian Radestock; Nicolae Solcan; Patricia M. Dijkman; Joseph A. Lyons; Jane Kwok; Martin Caffrey; Anthony Watts; Lucy R. Forrest; Simon Newstead

Summary Proton-coupled oligopeptide transporters belong to the major facilitator superfamily (MFS) of membrane transporters. Recent crystal structures suggest the MFS fold facilitates transport through rearrangement of their two six-helix bundles around a central ligand binding site; how this is achieved, however, is poorly understood. Using modeling, molecular dynamics, crystallography, functional assays, and site-directed spin labeling combined with double electron-electron resonance (DEER) spectroscopy, we present a detailed study of the transport dynamics of two bacterial oligopeptide transporters, PepTSo and PepTSt. Our results identify several salt bridges that stabilize outward-facing conformations and we show that, for all the current structures of MFS transporters, the first two helices of each of the four inverted-topology repeat units form half of either the periplasmic or cytoplasmic gate and that these function cooperatively in a scissor-like motion to control access to the peptide binding site during transport.


Structure | 2009

Insights into How Nucleotide-Binding Domains Power ABC Transport

Simon Newstead; Philip W. Fowler; Paul R. Bilton; Elisabeth P. Carpenter; Peter J. Sadler; Dominic J. Campopiano; Mark S.P. Sansom; So Iwata

Summary The mechanism by which nucleotide-binding domains (NBDs) of ABC transporters power the transport of substrates across cell membranes is currently unclear. Here we report the crystal structure of an NBD, FbpC, from the Neisseria gonorrhoeae ferric iron uptake transporter with an unusual and substantial domain swap in the C-terminal regulatory domain. This entanglement suggests that FbpC is unable to open to the same extent as the homologous protein MalK. Using molecular dynamics we demonstrate that this is not the case: both NBDs open rapidly once ATP is removed. We conclude from this result that the closed structures of FbpC and MalK have higher free energies than their respective open states. This result has important implications for our understanding of the mechanism of power generation in ABC transporters, because the unwinding of this free energy ensures that the opening of these two NBDs is also powered.


Structure | 2015

Nothing to Sneeze At: A Dynamic and Integrative Computational Model of an Influenza A Virion

Tyler Reddy; David Shorthouse; Daniel L. Parton; Elizabeth Jefferys; Philip W. Fowler; Matthieu Chavent; Marc Baaden; Mark S.P. Sansom

Summary The influenza virus is surrounded by an envelope composed of a lipid bilayer and integral membrane proteins. Understanding the structural dynamics of the membrane envelope provides biophysical insights into aspects of viral function, such as the wide-ranging survival times of the virion in different environments. We have combined experimental data from X-ray crystallography, nuclear magnetic resonance spectroscopy, cryo-electron microscopy, and lipidomics to build a model of the intact influenza A virion. This is the basis of microsecond-scale coarse-grained molecular dynamics simulations of the virion, providing simulations at different temperatures and with varying lipid compositions. The presence of the Forssman glycolipid alters a number of biophysical properties of the virion, resulting in reduced mobility of bilayer lipid and protein species. Reduced mobility in the virion membrane may confer physical robustness to changes in environmental conditions. Our simulations indicate that viral spike proteins do not aggregate and thus are competent for multivalent immunoglobulin G interactions.


Nature Communications | 2013

The pore of voltage-gated potassium ion channels is strained when closed

Philip W. Fowler; Mark S.P. Sansom

Voltage-gated potassium channels form potassium-selective pores in cell membranes. They open or close in response to changes in the transmembrane potential and are essential for generating action potentials, and thus for the functioning of heart and brain. While a mechanism for how these channels close has been proposed, it is not clear what drives their opening. Here we use free energy molecular dynamics simulations to show that work must be done on the pore to reduce the kink in the pore-lining (S6) α-helices, thereby forming the helix bundle crossing and closing the channel. Strain is built up as the pore closes, which subsequently drives opening. We also determine the effect of mutating the PVPV motif that causes the kink in the S6 helix. Finally, an approximate upper limit on how far the S4 helix is displaced as the pore closes is estimated.

Collaboration


Dive into the Philip W. Fowler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge