Philip W. Mote
Oregon State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Philip W. Mote.
Bulletin of the American Meteorological Society | 2005
Philip W. Mote; Alan F. Hamlet; Martyn P. Clark; Dennis P. Lettenmaier
In western North America, snow provides crucial storage of winter precipitation, effectively transferring water from the relatively wet winter season to the typically dry summers. Manual and telemetered measurements of spring snowpack, corroborated by a physically based hydrologic model, are examined here for climate-driven fluctuations and trends during the period of 1916–2002. Much of the mountain West has experienced declines in spring snowpack, especially since midcentury, despite increases in winter precipitation in many places. Analysis and modeling show that climatic trends are the dominant factor, not changes in land use, forest canopy, or other factors. The largest decreases have occurred where winter temperatures are mild, especially in the Cascade Mountains and northern California. In most mountain ranges, relative declines grow from minimal at ridgetop to substantial at snow line. Taken together, these results emphasize that the Wests snow resources are already declining as earths climate warms.
Journal of Climate | 2005
Alan F. Hamlet; Philip W. Mote; Martyn P. Clark; Dennis P. Lettenmaier
Abstract Recent studies have shown substantial declines in snow water equivalent (SWE) over much of the western United States in the last half century, as well as trends toward earlier spring snowmelt and peak spring streamflows. These trends are influenced both by interannual and decadal-scale climate variability, and also by temperature trends at longer time scales that are generally consistent with observations of global warming over the twentieth century. In this study, the linear trends in 1 April SWE over the western United States are examined, as simulated by the Variable Infiltration Capacity hydrologic model implemented at 1/8° latitude–longitude spatial resolution, and driven by a carefully quality controlled gridded daily precipitation and temperature dataset for the period 1915–2003. The long simulations of snowpack are used as surrogates for observations and are the basis for an analysis of regional trends in snowpack over the western United States and southern British Columbia, Canada. By is...
Journal of Climate | 2006
Philip W. Mote
Records of 1 April snow water equivalent (SWE) are examined here using multiple linear regression against reference time series of temperature and precipitation. This method permits 1) an examination of the separate roles of temperature and precipitation in determining the trends in SWE; 2) an estimation of the sensitivity of SWE to warming trends, and its distribution across western North America and as a function of elevation; and 3) inferences about responses of SWE to future warming. These results emphasize the sensitivity to warming of the mountains of northern California and the Cascades of Oregon and Washington. In addition, the contribution of modes of Pacific climate variability is examined and found to be responsible for about 10%–60% of the trends in SWE, depending on the period of record and climate index.
Climatic Change | 2003
Philip W. Mote; Edward A. Parson; Alan F. Hamlet; William S. Keeton; Dennis P. Lettenmaier; Nathan J. Mantua; Edward L. Miles; David W. Peterson; David L. Peterson; Richard A. Slaughter; A.K. Snover
The impacts of year-to-year and decade-to-decade climatic variations on some of the Pacific Northwests key natural resources can be quantified to estimate sensitivity to regional climatic changes expected as part of anthropogenic global climatic change. Warmer, drier years, often associated with El Niño events and/or the warm phase of the Pacific Decadal Oscillation, tend to be associated with below-average snowpack, streamflow, and flood risk, below-average salmon survival, below-average forest growth, and above-average risk of forest fire. During the 20th century, the region experienced a warming of 0.8 °C. Using output from eight climate models, we project a further warming of 0.5–2.5 °C (central estimate 1.5 °C) by the 2020s, 1.5–3.2°C (2.3 °C) by the 2040s, and an increase in precipitation except in summer. The foremost impact of a warming climate will be the reduction of regional snowpack, which presently supplies water for ecosystems and human uses during the dry summers. Our understanding of past climate also illustrates the responses of human management systems to climatic stresses, and suggests that a warming of the rate projected would pose significant challenges to the management of natural resources. Resource managers and planners currently have few plans for adapting to or mitigating the ecological and economic effects of climatic change.
Journal of Climate | 2009
Ross Brown; Philip W. Mote
Abstract A snowpack model sensitivity study, observed changes of snow cover in the NOAA satellite dataset, and snow cover simulations from the Coupled Model Intercomparison Project phase 3 (CMIP3) multimodel dataset are used to provide new insights into the climate response of Northern Hemisphere (NH) snow cover. Under conditions of warming and increasing precipitation that characterizes both observed and projected climate change over much of the NH land area with seasonal snow cover, the sensitivity analysis indicated snow cover duration (SCD) was the snow cover variable exhibiting the strongest climate sensitivity, with sensitivity varying with climate regime and elevation. The highest snow cover–climate sensitivity was found in maritime climates with extensive winter snowfall—for example, the coastal mountains of western North America (NA). Analysis of trends in snow cover duration during the 1966–2007 period of NOAA data showed the largest decreases were concentrated in a zone where seasonal mean air ...
Journal of Geophysical Research | 2010
Justin R. Minder; Philip W. Mote; Jessica D. Lundquist
lapse rates of 3.9–5.2°C km −1 , substantially smaller than the often‐assumed 6.5°C km −1 . The data sets show similar seasonal and diurnal variability, with lapse rates smallest (2.5–3.5°C km −1 ) in late‐summer minimum temperatures, and largest (6.5–7.5°C km −1 ) in spring maximum temperatures. Geographic (windward versus lee side) differences in lapse rates are found to be substantial. Using a simple runoff model, we show the appreciable implications of these results for hydrological modeling.
Journal of Climate | 2007
Alan F. Hamlet; Philip W. Mote; Martyn P. Clark; Dennis P. Lettenmaier
Abstract A physically based hydrology model is used to produce time series for the period 1916–2003 of evapotranspiration (ET), runoff, and soil moisture (SM) over the western United States from which long-term trends are evaluated. The results show that trends in ET in spring and summer are determined primarily by trends in precipitation and snowmelt that determine water availability. From April to June, ET trends are mostly positive due primarily to earlier snowmelt and earlier emergence of snow-free ground, and secondarily to increasing trends in spring precipitation. From July to September trends in ET are more strongly influenced by precipitation trends, with the exception of areas (most notably California) that receive little summer precipitation and have experienced large changes in snowmelt timing. Trends in the seasonal timing of ET are modest, but during the period 1947–2003 when temperature trends are large, they reflect a shift of ET from midsummer to early summer and late spring. As in other ...
Journal of Climate | 2014
John T. Abatzoglou; David E. Rupp; Philip W. Mote
Observed changes in climate of the U.S. Pacific Northwest since the early twentieth century were examined using four different datasets. Annual mean temperature increased by approximately 0.68‐0.88C from 1901 to 2012, with corroborating indicators including a lengthened freeze-free season, increased temperature of the coldest night of the year, and increased growing-season potential evapotranspiration. Seasonal temperature trends over shorter time scales (,50yr) were variable. Despite increased warming rates in most seasons over the last half century, nonsignificant cooling was observed during spring from 1980 to 2012. Observations show a long-term increase in spring precipitation; however, decreased summer and autumn precipitation and increased potential evapotranspiration have resultedin larger climatic water deficits over the past four decades. A bootstrapped multiple linear regression model was used to better resolve the temporal heterogeneity of seasonal temperature and precipitation trends and to apportion trends to internal climate variability, solar variability, volcanic aerosols, and anthropogenic forcing. The El Ni~ Oscillation and the Pacific‐ North American pattern were the primary modulators of seasonal temperature trends on multidecadal time scales: solar and volcanic forcing were nonsignificant predictors and contributed weakly to observed trends. Anthropogenic forcing was a significant predictor of, and the leading contributor to, long-term warming; natural factors alone fail to explain the observed warming. Conversely, poor model skill for seasonal precipitationsuggeststhatotherfactorsneedtobeconsideredtounderstandthesourcesofseasonalprecipitation trends.
Journal of Climate | 2009
Yongxin Zhang; Valérie Dulière; Philip W. Mote; Eric P. Salathe
Abstract This work compares the Weather Research and Forecasting (WRF) and Hadley Centre Regional Model (HadRM) simulations with the observed daily maximum and minimum temperature (Tmax and Tmin) and precipitation at Historical Climatology Network (HCN) stations over the U.S. Pacific Northwest for 2003–07. The WRF and HadRM runs were driven by the NCEP/Department of Energy (DOE) Atmospheric Model Intercomparison Project (AMIP)-II Reanalysis (R-2) data. The simulated Tmax in WRF and HadRM as well as in R-2 compares well with the observations. Predominantly cold biases of Tmax are noted in WRF and HadRM in spring and summer, while in winter and fall more stations show warm biases, especially in HadRM. Large cold biases of Tmax are noted in R-2 at all times. The simulated Tmin compares reasonably well with the observations, although not as well as Tmax in both models and in the reanalysis R-2. Warm biases of Tmin prevail in both model simulations, while R-2 shows mainly cold biases. The R-2 data play a role ...
Proceedings of the National Academy of Sciences of the United States of America | 2006
Edward L. Miles; A.K. Snover; L.C. Whitely Binder; E. S. Sarachik; Philip W. Mote; Nathan J. Mantua
Climate variability and change are considerably important for a wide range of human activities and natural ecosystems. Climate science has made major advances during the last two decades, yet climate information is neither routinely useful for nor used in planning. What is needed is a mechanism, a national climate service (NCS), to connect climate science to decision-relevant questions and support building capacity to anticipate, plan for, and adapt to climate fluctuations. This article contributes to the national debate for an NCS by describing the rationale for building an NCS, the functions and services it would provide, and how it should be designed and evaluated. The NCS is most effectively achieved as a federal interagency partnership with critically important participation by regional climate centers, state climatologists, the emerging National Integrated Drought Information System, and the National Oceanic and Atmospheric Administration (NOAA) Regional Integrated Sciences Assessment (RISA) teams in a sustained relationship with a wide variety of stakeholders. Because the NCS is a service, and because evidence indicates that the regional spatial scale is most important for delivering climate services, given subnational geographical/geophysical complexity, attention is focused on lessons learned from the University of Washington Climate Impacts Groups 10 years of experience, the first of the NOAA RISA teams.