Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philipp Adelhelm is active.

Publication


Featured researches published by Philipp Adelhelm.


Nature Materials | 2013

A rechargeable room-temperature sodium superoxide (NaO2) battery

Pascal Hartmann; Conrad L. Bender; Miloš Vračar; Anna Katharina Dürr; Arnd Garsuch; Jürgen Janek; Philipp Adelhelm

In the search for room-temperature batteries with high energy densities, rechargeable metal-air (more precisely metal-oxygen) batteries are considered as particularly attractive owing to the simplicity of the underlying cell reaction at first glance. Atmospheric oxygen is used to form oxides during discharging, which-ideally-decompose reversibly during charging. Much work has been focused on aprotic Li-O(2) cells (mostly with carbonate-based electrolytes and Li(2)O(2) as a potential discharge product), where large overpotentials are observed and a complex cell chemistry is found. In fact, recent studies evidence that Li-O(2) cells suffer from irreversible electrolyte decomposition during cycling. Here we report on a Na-O(2) cell reversibly discharging/charging at very low overpotentials (< 200 mV) and current densities as high as 0.2 mA cm(-2) using a pure carbon cathode without an added catalyst. Crystalline sodium superoxide (NaO(2)) forms in a one-electron transfer step as a solid discharge product. This work demonstrates that substitution of lithium by sodium may offer an unexpected route towards rechargeable metal-air batteries.


Energy and Environmental Science | 2011

Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies

Sebastian Wenzel; Takeshi Hara; Jürgen Janek; Philipp Adelhelm

Current kinetic limitations of carbon anode materials in sodium-ion batteries can be effectively tackled by using tailor-made carbon materials with hierarchical porosity prepared via the nanocasting route. Capacities exceeding 100 mA h g−1 at C/5 are found while exhibiting excellent rate capability and reasonable cycle life.


Angewandte Chemie | 2014

Use of Graphite as a Highly Reversible Electrode with Superior Cycle Life for Sodium‐Ion Batteries by Making Use of Co‐Intercalation Phenomena

Birte Jache; Philipp Adelhelm

Although being the standard anode material in lithium-ion batteries (LIBs), graphite so far is considered to fail application in sodium-ion batteries (NIBs) because the Na-C system lacks suitable binary intercalation compounds. Here we show that this limitation can be circumvented by using co-intercalation phenomena in a diglyme-based electrolyte. The resulting compound is a stage-I ternary intercalation compound with an estimated stoichiometry of Na(diglyme)2C20. Highlights of the electrode reaction are its high energy efficiency, the small irreversible loss during the first cycle, and a superior cycle life with capacities close to 100 mAh g(-1) for 1000 cycles and coulomb efficiencies >99.87%. A one-to-one comparison with the analogue lithium-based cell shows that the sodium-based system performs better and also withstands higher currents.


Chemsuschem | 2010

Nanosizing and Nanoconfinement: New Strategies Towards Meeting Hydrogen Storage Goals

Petra E. de Jongh; Philipp Adelhelm

Hydrogen is expected to play an important role as an energy carrier in a future, more sustainable society. However, its compact, efficient, and safe storage is an unresolved issue. One of the main options is solid-state storage in hydrides. Unfortunately, no binary metal hydride satisfies all requirements regarding storage density and hydrogen release and uptake. Increasingly complex hydride systems are investigated, but high thermodynamic stabilities as well as slow kinetics and poor reversibility are important barriers for practical application. Nanostructuring by ball-milling is an established method to reduce crystallite sizes and increase reaction rates. Since five years attention has also turned to alternative preparation techniques that enable particle sizes below 10 nanometers and are often used in conjunction with porous supports or scaffolds. In this Review we discuss the large impact of nanosizing and -confinement on the hydrogen sorption properties of metal hydrides. We illustrate possible preparation strategies, provide insight into the reasons for changes in kinetics, reversibility and thermodynamics, and highlight important progress in this field. All in all we provide the reader with a clear view of how nanosizing and -confinement can beneficially affect the hydrogen sorption properties of the most prominent materials that are currently considered for solid-state hydrogen storage.


Physical Chemistry Chemical Physics | 2013

A comprehensive study on the cell chemistry of the sodium superoxide (NaO2) battery

Pascal Hartmann; Conrad L. Bender; Joachim Sann; Anna Katharina Dürr; Martin Jansen; Jürgen Janek; Philipp Adelhelm

This work reports on the cell chemistry of a room temperature sodium-oxygen battery using an electrolyte of diethylene glycol dimethyl ether (diglyme) and sodium trifluoromethanesulfonate (NaSO3CF3, sodium triflate). Different from lithium-oxygen cells, where lithium peroxide is found as the discharge product, sodium superoxide (NaO2) is formed in the present cell, with overpotentials as low as 100 mV during charging. Several analytical methods are used to follow the cell reaction during discharge and charge. Changes in structure and morphology are studied by SEM and XRD. It is found that NaO2 grows as cubic particles with feed sizes in the range of 10-50 μm; upon recharge the particles consecutively decompose. Pressure monitoring during galvanostatic cycling shows that the coulombic efficiency (e(-)/O2) for discharge and charge is approx. 1.0, the expected value for NaO2 formation. Also optical spectroscopy is identified as a convenient and useful tool to follow the discharge-charge process. The maximum discharge capacity is found to be limited by oxygen transport within the electrolyte soaked carbon fiber cathode and pore blocking near the oxygen interface is observed. Finally electrolyte decomposition and sodium dendrite growth are identified as possible reasons for the limited capacity retention of the cell. The occurrence of undesired side reactions is analyzed by DEMS measurements during cycling as well as by post mortem XPS investigations.


Beilstein Journal of Nanotechnology | 2015

From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

Philipp Adelhelm; Pascal Hartmann; Conrad L. Bender; Martin R. Busche; Christine Eufinger; Juergen Janek

Summary Research devoted to room temperature lithium–sulfur (Li/S8) and lithium–oxygen (Li/O2) batteries has significantly increased over the past ten years. The race to develop such cell systems is mainly motivated by the very high theoretical energy density and the abundance of sulfur and oxygen. The cell chemistry, however, is complex, and progress toward practical device development remains hampered by some fundamental key issues, which are currently being tackled by numerous approaches. Quite surprisingly, not much is known about the analogous sodium-based battery systems, although the already commercialized, high-temperature Na/S8 and Na/NiCl2 batteries suggest that a rechargeable battery based on sodium is feasible on a large scale. Moreover, the natural abundance of sodium is an attractive benefit for the development of batteries based on low cost components. This review provides a summary of the state-of-the-art knowledge on lithium–sulfur and lithium–oxygen batteries and a direct comparison with the analogous sodium systems. The general properties, major benefits and challenges, recent strategies for performance improvements and general guidelines for further development are summarized and critically discussed. In general, the substitution of lithium for sodium has a strong impact on the overall properties of the cell reaction and differences in ion transport, phase stability, electrode potential, energy density, etc. can be thus expected. Whether these differences will benefit a more reversible cell chemistry is still an open question, but some of the first reports on room temperature Na/S8 and Na/O2 cells already show some exciting differences as compared to the established Li/S8 and Li/O2 systems.


Journal of Materials Chemistry | 2011

The impact of carbon materials on the hydrogen storage properties of light metal hydrides

Philipp Adelhelm; Petra E. de Jongh

The safe and efficient storage of hydrogen is still one of the remaining challenges towards fuel cell powered cars. Metal hydrides are a promising class of materials as they allow the storage of large amounts of hydrogen in a small volume at room temperature and low pressures. However, usually the kinetics of hydrogen release and uptake and the thermodynamic properties do not satisfy the requirements for practical applications. Therefore current research focuses on catalysis and the thermodynamic tailoring of metal hydride systems. Surprisingly, carbon materials used as additive or support are very effective to improve the hydrogen storage properties of metal hydrides allowing fast kinetics and even a change in the thermodynamic properties. Even though the underlying mechanisms are not always well understood, the beneficial effect is probably related to the peculiar structure of the carbon materials. This feature article gives an introduction to the different carbon materials, an overview of the preparation strategies to synthesize carbon/hydride nanocomposites, and highlights the beneficial effect of carbon by discussing two important hydrides: MgH2 and NaAlH4.


Nature Chemistry | 2016

Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts

Martin R. Busche; Thomas Drossel; Thomas Leichtweiss; Dominik A. Weber; Mareike Falk; Meike Schneider; Maria-Louisa Reich; Heino Sommer; Philipp Adelhelm; Jürgen Janek

The discharging and charging of batteries require ion transfer across phase boundaries. In conventional lithium-ion batteries, Li(+) ions have to cross the liquid electrolyte and only need to pass the electrode interfaces. Future high-energy batteries may need to work as hybrids, and so serially combine a liquid electrolyte and a solid electrolyte to suppress unwanted redox shuttles. This adds new interfaces that might significantly decrease the cycling-rate capability. Here we show that the interface between a typical fast-ion-conducting solid electrolyte and a conventional liquid electrolyte is chemically unstable and forms a resistive solid-liquid electrolyte interphase (SLEI). Insights into the kinetics of this new type of interphase are obtained by impedance studies of a two-chamber cell. The chemistry of the SLEI, its growth with time and the influence of water impurities are examined by state-of-the-art surface analysis and depth profiling.


Angewandte Chemie | 2018

From Lithium‐Ion to Sodium‐Ion Batteries: Advantages, Challenges, and Surprises

Prasant Kumar Nayak; Liangtao Yang; Wolfgang Brehm; Philipp Adelhelm

Mobile and stationary energy storage by rechargeable batteries is a topic of broad societal and economical relevance. Lithium-ion battery (LIB) technology is at the forefront of the development, but a massively growing market will likely put severe pressure on resources and supply chains. Recently, sodium-ion batteries (SIBs) have been reconsidered with the aim of providing a lower-cost alternative that is less susceptible to resource and supply risks. On paper, the replacement of lithium by sodium in a battery seems straightforward at first, but unpredictable surprises are often found in practice. What happens when replacing lithium by sodium in electrode reactions? This review provides a state-of-the art overview on the redox behavior of materials when used as electrodes in lithium-ion and sodium-ion batteries, respectively. Advantages and challenges related to the use of sodium instead of lithium are discussed.


Angewandte Chemie | 2016

One- or Two-Electron Transfer? The Ambiguous Nature of the Discharge Products in Sodium-Oxygen Batteries.

Conrad L. Bender; Daniel Schröder; Ricardo Pinedo; Philipp Adelhelm; Jürgen Janek

Rechargeable lithium-oxygen and sodium-oxygen cells have been considered as challenging concepts for next-generation batteries, both scientifically and technologically. Whereas in the case of non-aqueous Li/O2 batteries, the occurring cell reaction has been unequivocally determined (Li2O2 formation), the situation is much less clear in the case of non-aqueous Na/O2 cells. Two discharge products, with almost equal free enthalpies of formation but different numbers of transferred electrons and completely different kinetics, appear to compete, namely NaO2 and Na2O2. Cells forming either the superoxide or the peroxide have been reported, but it is unclear how the cell reaction can be influenced for selective one- or two-electron transfer to occur. In this Minireview, we summarize available data, discuss important control parameters, and offer perspectives for further research. Water and proton sources appear to play major roles.

Collaboration


Dive into the Philipp Adelhelm's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yong-Sheng Hu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge