Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philipp Heusch is active.

Publication


Featured researches published by Philipp Heusch.


Radiology | 2013

Hybrid PET/MR Imaging of the Heart: Feasibility and Initial Results

Felix Nensa; Thorsten D. Poeppel; Karsten Beiderwellen; Juliane Schelhorn; Amir A. Mahabadi; Raimund Erbel; Philipp Heusch; Kai Nassenstein; Andreas Bockisch; Michael Forsting; Thomas Schlosser

PURPOSE To assess the feasibility of hybrid imaging of the heart with fluorine 18 fluorodeoxyglucose (FDG) on an integrated 3-T positron emission tomography (PET)/magnetic resonance (MR) imaging system. MATERIALS AND METHODS The present study was approved by the local institutional review board. Written informed consent was obtained from all patients before imaging. Twenty consecutive patients with myocardial infarction (n = 20) underwent cardiac PET/MR imaging examination. Ten patients underwent additional cardiac PET/computed tomography (CT) before PET/MR. Two-dimensional half-Fourier acquisition single-shot turbo spin-echo sequences, balanced steady-state free precession cine sequences, two-dimensional turbo inversion-recovery magnitude T2-weighted sequences, and late gadolinium-enhanced (LGE) segmented two-dimensional inversion-recovery turbo fast low-angle shot sequences were performed. According to the 17-segment model, PET tracer uptake, wall motion, and late gadolinium enhancement were visually assessed for each segment on a binary scale, and categorical intermethod agreement was calculated by using the Cohen κ. The maximum standardized uptake value was measured in corresponding myocardial locations on PET/CT and PET/MR images. RESULTS Agreement was substantial over all patients and segments between PET and LGE images (κ = 0.76) and between PET and cine images (κ = 0.78). In 306 segments, 97 (32%) were rated as infarcted on PET images, compared with 93 (30%) rated as infarcted on LGE images and with 90 (29%) rated as infarcted on cine images. In a subgroup of patients (n = 10) with an additional PET/CT scan, no significant difference in myocardial tracer uptake between PET/CT and PET/MR images was found (paired t test, P = .95). CONCLUSION Cardiac PET/MR imaging with FDG is feasible and may add complementary information in patients with ischemic heart disease.


European Journal of Radiology | 2013

Standardized uptake values for [18F] FDG in normal organ tissues: Comparison of whole-body PET/CT and PET/MRI

Philipp Heusch; Christian Buchbender; Karsten Beiderwellen; Felix Nensa; Verena Hartung-Knemeyer; Thomas C. Lauenstein; Andreas Bockisch; Michael Forsting; Gerald Antoch; Till A. Heusner

PURPOSE To compare maximum and mean standardized uptake values (SUVmax/mean) of normal organ tissues derived from [(18)F]-fluoro-desoxyglucose (FDG) positron emission tomography/magnetic resonance imaging (PET/MRI) using MR attenuation correction (MRAC) (DIXON-based 4-segment μ-map) with [(18)F]-FDG positron emission tomography/computed tomography (PET/CT) using CT-based attenuation correction (CTAC). METHODS AND MATERIALS In 25 oncologic patients (15 men, 10 women; age 57 ± 13 years) after routine whole-body FDG-PET/CT (60 min after injection of 290 ± 40 MBq [(18)F]-FDG) a whole-body PET/MRI was performed (Magnetom Biograph mMR, Siemens Healthcare, Erlangen, Germany). Volumes of interest of 1.0 cm(3) were drawn in 7 physiological organ sites in MRAC-PET and the corresponding CTAC-PET images manually. Spearman correlation coefficients were calculated to compare MRAC- and CTAC based SUV values; Wilcoxon-Matched-Pairs signed ranks test was performed to test for potential differences. RESULTS The mean delay between FDG-PET/CT and PET/MRI was 92 ± 18 min. Excellent correlations of SUV values were found for the heart muscle (SUVmax/mean: R=0.97/0.97); reasonably good correlations were found for the liver (R=0.65/0.72), bone marrow (R=0.42/0.41) and the SUVmax of the psoas muscle (R=0.41). For subcutaneous fat, the correlation coefficient was 0.66 for SUVmean (p<0.05). Correlations between MRAC and CTAC were non-significant for SUVmean of the psoas muscle, SUVmax of subcutaneous fat, SUVmax and SUVmean of the lungs, SUVmax and SUVmean of the blood-pool. The median SUVmax and SUVmean in MRAC-PET were lower than the respective CTAC values in all organs (p<0.05) but heart (SUVmax) and the bone marrow (SUVmean). CONCLUSION In conclusion, in oncologic patients examined with PET/CT and PET/MRI SUVmax and SUVmean values generally correlate well in normal organ tissues, except the lung, subcutaneous fat and the blood pool. SUVmax and SUVmean derived from PET/MRI can be used reliably in clinical routine.


Radiology | 2013

Kidney Transplant: Functional Assessment with Diffusion-Tensor MR Imaging at 3T

Rs Lanzman; Alexandra Ljimani; Gael Pentang; Panagiota Zgoura; Hakan Zenginli; Patric Kröpil; Philipp Heusch; Julia Schek; Falk Miese; Dirk Blondin; Gerald Antoch; Hans-Jörg Wittsack

PURPOSE To evaluate the feasibility of diffusion-tensor (DT) imaging at 3 T for functional assessment of transplanted kidneys. MATERIALS AND METHODS This study was approved by the local ethics committee; written informed consent was obtained. Between August 2009 and October 2010, 40 renal transplant recipients were prospectively included in this study and examined with a clinical 3-T magnetic resonance (MR) imager. An echo-planar DT imaging sequence was performed in coronal orientation by using five b values (0, 200, 400, 600, 800 sec/mm(2)) and 20 diffusion directions. The fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were determined for the cortex and medulla of the transplanted kidney. Relationships between FA, ADC, and allograft function, determined by the estimated glomerular filtration rate (eGFR), were assessed by using Pearson correlation coefficient. ADC and FA were compared between patients with good or moderate allograft function (group A; eGFR > 30 mL/min/1.73 m(2)) and patients with impaired function (group B; eGFR ≤ 30 mL/min/1.73 m(2)) by using a student t test. P < .05 indicated a statistically significant difference. RESULTS Mean FA of the renal medulla and cortex was significantly higher in group A (0.39 ± 0.06 and 0.17 ± 0.4) compared with group B (0.27 ± 0.05 and 0.14 ± 0.03) (P < .001 and P = .009, respectively). Mean ADCs of renal cortex and medulla were significantly higher in group A than in group B (P = .007 and P = .01, respectively). In group B, mean medullary FA was significantly lower in patients whose renal function did not recover (0.22 ± 0.02) compared with those with stable allograft function at 6 months (0.29 ± 0.05, P < .001). There was significant correlation between eGFR and medullary FA (r = 0.65, P < .001), cortical ADC (r = 0.43, P = .003), and medullary ADC (r = 0.35, P = .01). CONCLUSION DT imaging is a promising noninvasive technique for functional assessment of renal allografts. FA values in the renal medulla exhibit a good correlation with renal function.


European Journal of Nuclear Medicine and Molecular Imaging | 2015

[ 18 F]FDG PET/MRI vs. PET/CT for whole-body staging in patients with recurrent malignancies of the female pelvis: initial results

Karsten Beiderwellen; Johannes Grueneisen; Verena Ruhlmann; Paul Buderath; Bahriye Aktas; Philipp Heusch; Oliver Kraff; Michael Forsting; Tc Lauenstein; Lale Umutlu

PurposeTo evaluate the diagnostic potential of PET/MRI with [18F]FDG in recurrent ovarian and cervical cancer in comparison to PET/CT.MethodsA group of 19 patients with suspected recurrence of pelvic malignancies (ovarian cancer, 11 patients; cervical cancer, 8 patients) scheduled for an [18F]FDG PET/CT were subsequently enrolled for a PET/MRI. The scan protocol comprised: (1) a T1-W axial VIBE after contrast agent adminstration, (2) an axial T2-W HASTE, (3) a coronal TIRM, (4) an axial DWI, and dedicated MR sequences of the female pelvis including (5) a T1-W VIBE before contrast agent adminstration, (6) a sagittal T2-W TSE, and (7) a sagittal T1-W dynamic VIBE. The datasets (PET/CT, PET/MRI) were rated separately by two readers regarding lesion count, lesion localization, lesion conspicuity (four-point scale), lesion characterization (benign/malignant/indeterminate) and diagnostic confidence (three-point scale). All available data (histology, prior examinations, PET/CT, PET/MRI, follow-up examinations) served as standard of reference. Median values were compared using the Wilcoxon rank sum test.ResultsMetastatic lesions were present in 16 of the 19 patients. A total of 78 lesions (malignant, 58; benign, 20) were described. Both PET/CT and PET/MRI allowed correct identification of all malignant lesions and provided equivalent conspicuity (3.86 ± 0.35 for PET/CT, 3.91 ± 0.28 for PET/MRI; p > 0.05). Diagnostic confidence was significantly higher for PET/MRI in malignant (p < 0.01) and benign lesions (p < 0.05).ConclusionBoth PET/CT and PET/MRI offer an equivalently high diagnostic value for recurrent pelvic malignancies. PET/MRI offers higher diagnostic confidence in the discrimination of benign and malignant lesions. Considering the reduced radiation dose and superior lesion discrimination, PET/MRI may serve as a powerful alternative to PET/CT in the future.


The Journal of Nuclear Medicine | 2015

Integrated 18F-FDG PET/MR Imaging in the Assessment of Cardiac Masses: A Pilot Study

Felix Nensa; Ercan Tezgah; Thorsten D. Poeppel; Christoph J Jensen; Juliane Schelhorn; Jens Köhler; Philipp Heusch; Oliver Bruder; Thomas Schlosser; Kai Nassenstein

The objective of the present study was to evaluate whether integrated 18F-FDG PET/MR imaging could improve the diagnostic workup in patients with cardiac masses. Methods: Twenty patients were prospectively assessed using integrated cardiac 18F-FDG PET/MR imaging: 16 patients with cardiac masses of unknown identity and 4 patients with cardiac sarcoma after surgical therapy. All scans were obtained on an integrated 3-T PET/MR device. The MR protocol consisted of half Fourier acquisition single-shot turbo spin-echo sequence, cine, and T2-weighted images as well as T1-weighted images before and after injection of gadobutrol. PET data were acquired simultaneously with the MR scan after injection of 199 ± 58 MBq of 18F-FDG. Patients were prepared with a high-fat, low-carbohydrate diet in a period of 24 h before the examination, and 50 IU/kg of unfractionated heparin were administered intravenously 15 min before 18F-FDG injection. Results: Cardiac masses were diagnosed as follows: metastases, 3; direct tumor infiltration via pulmonary vein, 1; local relapse of primary sarcoma after surgery, 2; Burkitt lymphoma, 1; scar/patch tissue after surgery of primary sarcoma, 2; myxoma, 4; fibroelastoma, 1; caseous calcification of mitral annulus, 3; and thrombus, 3. The maximum standardized uptake value (SUVmax) in malignant lesions was significantly higher than in nonmalignant cases (13.2 ± 6.2 vs. 2.3 ± 1.2, P = 0.0004). When a threshold of 5.2 or greater was used, SUVmax was found to yield 100% sensitivity and 92% specificity for the differentiation between malignant and nonmalignant cases. T2-weighted hyperintensity and contrast enhancement both yielded 100% sensitivity but a weak specificity of 54% and 46%, respectively. Morphologic tumor features as assessed by cine MR imaging yielded 86% sensitivity and 92% specificity. Consent interpretation using all available MR features yielded 100% sensitivity and 92% specificity. A Boolean ‘AND’ combination of an SUVmax of 5.2 or greater with consent MR image interpretation improved sensitivity and specificity to 100%. Conclusion: In selected patients, 18F-FDG PET/MR imaging can improve the noninvasive diagnosis and follow-up of cardiac masses.


European Journal of Radiology | 2013

Diffusion-weighted imaging as part of hybrid PET/MRI protocols for whole-body cancer staging: does it benefit lesion detection?

Christian Buchbender; Verena Hartung-Knemeyer; Karsten Beiderwellen; Philipp Heusch; Hilmar Kühl; Thomas C. Lauenstein; Michael Forsting; Gerald Antoch; Till A. Heusner

PURPOSE Positron emission tomography/magnetic resonance imaging (PET/MRI) requires efficient scan protocols for whole-body cancer staging. The aim of this study was to evaluate if the application of diffusion-weighted MR imaging (DWI) results in a diagnostic benefit for lesion detection in oncologic patients if added to a whole-body [18F]-fluorodesoxyglucose ([18F]-FDG) PET/MRI protocol. METHODS 25 consecutive oncologic patients (16 men, 9 women; age 57 ± 12 years) prospectively underwent whole-body [18F]-FDG-PET/MRI including DWI on a hybrid PET/MRI scanner. A team of two readers assessed [18F]-FDG PET/MRI without DWI for primary tumors and metastases. In a second session, now considering DWI, readers reassessed [18F]-FDG PET/MRI accordingly. Additionally, the lesion-to-background contrast on [18F]-FDG PET and DWI was rated qualitatively (0, invisible; 1, low; 2, intermediate; 3, high). Wilcoxons signed-rank test was performed to test for differences in the lesion-to-background contrast. RESULTS 49 lesions were detected in 16 patients (5 primaries, 44 metastases). All 49 lesions were concordantly detected by [18F]-FDG PET/MRI alone and [18F]-FDG PET/MRI with DWI. The lesion-to-background contrast on DWI compared to [18F]-FDG PET was rated lower in 22 (44.9%) of 49 detected lesions resulting in a significantly higher lesion-to-background contrast on [18F]-FDG PET compared to DWI (P=0.001). CONCLUSIONS DWI as part of whole-body [18F]-FDG PET/MRI does not benefit lesion detection. Given the necessity to optimize imaging protocols with regard to patient comfort and efficacy, DWI has to be questioned as a standard tool for whole-body staging in oncologic PET/MRI.


European Journal of Nuclear Medicine and Molecular Imaging | 2014

Evaluation of the PET component of simultaneous [ 18 F]choline PET/MRI in prostate cancer: comparison with [ 18 F]choline PET/CT

Axel Wetter; Christine Lipponer; Felix Nensa; Philipp Heusch; H. Rübben; Jens-Christian Altenbernd; Thomas Schlosser; Andreas Bockisch; Thorsten Pöppel; Thomas C. Lauenstein; James Nagarajah

PurposeThe aim of this study was to evaluate the positron emission tomography (PET) component of [18F]choline PET/MRI and compare it with the PET component of [18F]choline PET/CT in patients with histologically proven prostate cancer and suspected recurrent prostate cancer.MethodsThirty-six patients were examined with simultaneous [18F]choline PET/MRI following combined [18F]choline PET/CT. Fifty-eight PET-positive lesions in PET/CT and PET/MRI were evaluated by measuring the maximum and mean standardized uptake values (SUVmax and SUVmean) using volume of interest (VOI) analysis. A scoring system was applied to determine the quality of the PET images of both PET/CT and PET/MRI. Agreement between PET/CT and PET/MRI regarding SUVmax and SUVmean was tested using Pearson’s product-moment correlation and Bland-Altman analysis.ResultsAll PET-positive lesions that were visible on PET/CT were also detectable on PET/MRI. The quality of the PET images was comparable in both groups. Median SUVmax and SUVmean of all lesions were significantly lower in PET/MRI than in PET/CT (5.2 vs 6.1, p < 0.05 and 2.0 vs 2.6, p < 0.001, respectively). Pearson’s product-moment correlation indicated highly significant correlations between SUVmax of PET/CT and PET/MRI (R = 0.86, p < 0.001) as well as between SUVmean of PET/CT and PET/MRI (R = 0.81, p < 0.001). Bland-Altman analysis revealed lower and upper limits of agreement of −2.77 to 3.64 between SUVmax of PET/CT vs PET/MRI and −1.12 to +2.23 between SUVmean of PET/CT vs PET/MRI.ConclusionPET image quality of PET/MRI was comparable to that of PET/CT. A highly significant correlation between SUVmax and SUVmean was found. Both SUVmax and SUVmean were significantly lower in [18F]choline PET/MRI than in [18F]choline PET/CT. Differences of SUVmax and SUVmean might be caused by different techniques of attenuation correction. Furthermore, differences in biodistribution and biokinetics of [18F]choline between the subsequent examinations and in the respective organ systems have to be taken into account.


Diagnostic and interventional radiology | 2014

Clinical applications of PET/MRI: current status and future perspectives.

Felix Nensa; Karsten Beiderwellen; Philipp Heusch; Axel Wetter

Fully integrated positron emission tomography (PET)/magnetic resonance imaging (MRI) scanners have been available for a few years. Since then, the number of scanner installations and published studies have been growing. While feasibility of integrated PET/MRI has been demonstrated for many clinical and preclinical imaging applications, now those applications where PET/MRI provides a clear benefit in comparison to the established reference standards need to be identified. The current data show that those particular applications demanding multiparametric imaging capabilities, high soft tissue contrast and/or lower radiation dose seem to benefit from this novel hybrid modality. Promising results have been obtained in whole-body cancer staging in non-small cell lung cancer and multiparametric tumor imaging. Furthermore, integrated PET/MRI appears to have added value in oncologic applications requiring high soft tissue contrast such as assessment of liver metastases of neuroendocrine tumors or prostate cancer imaging. Potential benefit of integrated PET/MRI has also been demonstrated for cardiac (i.e., myocardial viability, cardiac sarcoidosis) and brain (i.e., glioma grading, Alzheimers disease) imaging, where MRI is the predominant modality. The lower radiation dose compared to PET/computed tomography will be particularly valuable in the imaging of young patients with potentially curable diseases.However, further clinical studies and technical innovation on scanner hard- and software are needed. Also, agreements on adequate refunding of PET/MRI examinations need to be reached. Finally, the translation of new PET tracers from preclinical evaluation into clinical applications is expected to foster the entire field of hybrid PET imaging, including PET/MRI.


Journal of Magnetic Resonance Imaging | 2014

Functional evaluation of transplanted kidneys using arterial spin labeling MRI

Philipp Heusch; Hans-Jörg Wittsack; Dirk Blondin; Alexandra Ljimani; Michael Nguyen‐Quang; Petros Martirosian; Hakan Zenginli; Philip Bilk; Patric Kröpil; Till A. Heusner; Gerald Antoch; Rs Lanzman

To investigate non–contrast‐enhanced arterial spin labeling (ASL) MRI for functional assessment of transplanted kidneys at 1.5 Tesla (T) and 3T.


PLOS ONE | 2014

Correlation of Standardized Uptake Value and Apparent Diffusion Coefficient in Integrated Whole-Body PET/MRI of Primary and Recurrent Cervical Cancer

Johannes Grueneisen; Karsten Beiderwellen; Philipp Heusch; Paul Buderath; Bahriye Aktas; Marcel Gratz; Michael Forsting; Thomas C. Lauenstein; Verena Ruhlmann; Lale Umutlu

Background To evaluate a potential correlation of the maximum standard uptake value (SUVmax) and the minimum apparent diffusion coefficient (ADCmin) in primary and recurrent cervical cancer based on integrated PET/MRI examinations. Methods 19 consecutive patients (mean age 51.6 years; range 30–72 years) with histopathologically confirmed primary cervical cancer (n = 9) or suspected tumor recurrence (n = 10) were prospectively enrolled for an integrated PET/MRI examination. Two radiologists performed a consensus reading in random order, using a dedicated post-processing software. Polygonal regions of interest (ROI) covering the entire tumor lesions were drawn into PET/MR images to assess SUVmax and into ADC parameter maps to determine ADCmin values. Pearson’s correlation coefficients were calculated to assess a potential correlation between the mean values of ADCmin and SUVmax. Results In 15 out of 19 patients cervical cancer lesions (n = 12) or lymph node metastases (n = 42) were detected. Mean SUVmax (12.5±6.5) and ADCmin (644.5±179.7×10−5 mm2/s) values for all assessed tumor lesions showed a significant but weak inverse correlation (R = −0.342, p<0.05). When subdivided in primary and recurrent tumors, primary tumors and associated primary lymph node metastases revealed a significant and strong inverse correlation between SUVmax and ADCmin (R = −0.692, p<0.001), whereas recurrent cancer lesions did not show a significant correlation. Conclusions These initial results of this emerging hybrid imaging technique demonstrate the high diagnostic potential of simultaneous PET/MR imaging for the assessment of functional biomarkers, revealing a significant and strong correlation of tumor metabolism and higher cellularity in cervical cancer lesions.

Collaboration


Dive into the Philipp Heusch's collaboration.

Top Co-Authors

Avatar

Gerald Antoch

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rs Lanzman

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Patric Kröpil

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Lale Umutlu

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Felix Nensa

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Karsten Beiderwellen

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Johannes Grueneisen

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

L Sawicki

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Michael Forsting

University of Duisburg-Essen

View shared research outputs
Researchain Logo
Decentralizing Knowledge