Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philipp M. Meyer is active.

Publication


Featured researches published by Philipp M. Meyer.


Archives of General Psychiatry | 2009

Reduced α4β2*–Nicotinic Acetylcholine Receptor Binding and Its Relationship to Mild Cognitive and Depressive Symptoms in Parkinson Disease

Philipp M. Meyer; Karl Strecker; Kai Kendziorra; Georg Becker; Swen Hesse; Dominique Woelpl; Anke Hensel; Marianne Patt; Dietlind Sorger; Florian Wegner; Donald Lobsien; Henryk Barthel; Peter Brust; Hermann Josef Gertz; Osama Sabri; Johannes Schwarz

CONTEXT Cognitive or depressive disorders are frequently noted in patients with Parkinson disease (PD) and may be related to altered signaling through alpha4beta2*-nicotinic acetylcholine receptors (alpha4beta2*-nAChRs). OBJECTIVE To assess the availability of alpha4beta2*-nAChRs and their relationship to mild cognitive and mild depressive symptoms in vivo in patients with PD. DESIGN Crossover comparison between patients with PD and healthy volunteers (control group) using the alpha4beta2*-nAChR-specific radioligand 2-[(18)F]fluoro-3-(2[S]-2-azetidinylmethoxy)-pyridine (2-[(18)F]FA-85380) and positron emission tomography. SETTING Departments of Neurology and Nuclear Medicine, University of Leipzig, Leipzig, Germany. PARTICIPANTS Twenty-two nonsmoking patients with PD and 9 nonsmoking healthy volunteers. MAIN OUTCOME MEASURES Level of 2-[(18)F]FA-85380 binding potential (2-FA BP), a measure of alpha4beta2*-nAChR availability. The relationship between severity of cognitive symptoms as rated using the Mini-Mental State Examination and DemTect scale and the level of depressive symptoms as indicated using the Beck Depression Inventory, and 2-FA BP were assessed. RESULTS In patients with PD compared with healthy volunteers, there was widespread reduced 2-FA BP, especially in the midbrain, pons, anterior cingulate cortex, frontoparietal cortex, and cerebellum. In subgroups of patients with PD with possible depression, reduced 2-FA BP was most pronounced in the cingulate cortex and frontoparieto-occipital cortex, whereas in patients with PD with mild cognitive impairment, 2-FA BP was reduced in the midbrain, pons, and cerebellum. In patients with PD, the strongest associations between depressive symptoms and reduced 2-FA BP were noted in the anterior cingulate cortex, putamen, midbrain, and occipital cortex. In contrast, cognitive symptoms correlated only weakly with reduced 2-FA BP in the thalamus, midbrain, temporal cortex, hippocampus, and cerebellum. CONCLUSIONS There is a broad reduction of alpha4beta2*-nAChR availability in patients with PD without clinically manifest dementia or depression compared with healthy volunteers. Reduced alpha4beta2*-nAChR binding in patients with PD within the subcortical and cortical regions is associated with the severity of mild cognitive or depressive symptoms. These results provide novel in vivo evidence for a role of the cholinergic neurotransmission in psychiatric comorbidity of PD.


European Journal of Nuclear Medicine and Molecular Imaging | 2011

Decreased cerebral α4β2* nicotinic acetylcholine receptor availability in patients with mild cognitive impairment and Alzheimer's disease assessed with positron emission tomography.

Kai Kendziorra; Henrike Wolf; Philipp M. Meyer; Henryk Barthel; Swen Hesse; Georg Becker; Julia Luthardt; Andreas Schildan; Marianne Patt; Dietlind Sorger; Anita Seese; Herman-Josef Gertz; Osama Sabri

PurposePostmortem studies indicate a loss of nicotinic acetylcholine receptor (nAChRs) in Alzheimer’s disease (AD). In order to establish whether these changes in the cholinergic system occur at an early stage of AD, we carried out positron emission tomography (PET) with a specific radioligand for the α4β2* nicotinic acetylcholine receptor (α4β2* nAChR) in patients with mild to moderate AD and in patients with amnestic mild cognitive impairment (MCI), who have a high risk to progress to AD.MethodsNine patients with moderate AD, eight patients with MCI and seven age-matched healthy controls underwent 2-[18F]fluoro-3-(2(S)-azetidinylmethoxy)pyridine (2-[18F]FA-85380) PET. After coregistration with individual magnetic resonance imaging the binding potential (BPND) of 2-[18F]FA-85380 was calculated using either the corpus callosum or the cerebellum as reference regions. PET data were analysed by region of interest analysis and by voxel-based analysis.ResultsBoth patients with AD and MCI showed a significant reduction in 2-[18F]FA-85380 BPND in typical AD-affected brain regions. Thereby, the corpus callosum was identified as the most suitable reference region. The 2-[18F]FA-85380 BPND correlated with the severity of cognitive impairment. Only MCI patients that converted to AD in the later course (n = 5) had a reduction in 2-[18F]FA-85380 BPND.Conclusion2-[18F]FA-85380 PET appears to be a sensitive and feasible tool for the detection of a reduction in α4β2* nAChRs which seems to be an early event in AD. In addition, 2-[18F]FA-85380 PET might give prognostic information about a conversion from MCI to AD.


European Journal of Nuclear Medicine and Molecular Imaging | 2009

Monoamine transporter availability in Parkinson's disease patients with or without depression

Swen Hesse; Philipp M. Meyer; Karl Strecker; Henryk Barthel; Florian Wegner; Christian Oehlwein; Ioannis Ugo Isaias; Johannes Schwarz; Osama Sabri

PurposeDepression is a common symptom in patients suffering from Parkinson’s disease (PD) and markedly reduces their quality of life. As post-mortem studies have shown, its presence may reflect extensive cell loss in the midbrain and brainstem with imbalances in monoaminergic neurotransmitters. However, in vivo evidence of specific monoaminergic deficits in depressed PD patients is still sparse. Therefore, we studied PD patients with depression (PD+D) and without depression (PD−D) using high-resolution single-photon emission computed tomography (SPECT) and the monoamine transporter marker [123I]FP-CIT.MethodsA magnetic resonance imaging-based region-of-interest analysis was applied to quantify the specific-to-nondisplaceable [123I]FP-CIT binding coefficient V3″ in the striatum, thalamus and midbrain/brainstem regions.ResultsPD+D patients had significantly lower V3″ compared with PD−D patients in the striatum (p<0.001), thalamus (p=0.002), and midbrain/brainstem (p=0.025). Only PD+D patients without selective serotonin reuptake inhibitor (SSRI) treatment showed lower thalamic and midbrain V3″ than controls (p<0.001, p=0.029). In a small sub-group of SSRI-treated PD+D patients neither thalamic V3″ nor midbrain/brainstem V3″ differed from those in PD−D patients (p=0.168, p=0.201) or controls (p=0.384, p=0.318).ConclusionOur data indicate that depression in PD is associated with a more pronounced loss of striatal dopamine transporter availability that is most likely secondary to increased dopaminergic degeneration. In addition, depressed PD patients have a lower availability of midbrain/brainstem monoamine transporters than nondepressed PD patients. These findings provide in vivo evidence in support of the known post-mortem data demonstrating more extensive nerve cell loss in PD with depression and indicate that SPECT imaging can help to identify pathophysiological changes underlying nonmotor symptoms in this common movement disorder.


NeuroImage | 2011

Impact of EEG-vigilance on brain glucose uptake measured with [18F]FDG and PET in patients with depressive episode or mild cognitive impairment

Thomas Guenther; Peter Schönknecht; Georg Becker; Sebastian Olbrich; Christian Sander; Swen Hesse; Philipp M. Meyer; Julia Luthardt; Ulrich Hegerl; Osama Sabri

INTRODUCTION [(18)F]fluorodeoxyglucose positron emission tomography ([(18)F]FDG-PET) is a well-established method for the examination of the cerebral glucose metabolism of patients with affective disorder or memory impairment. An understudied question is how far results are influenced by interindividual differences in central nervous arousal as assessed with electroencephalogram (EEG-vigilance) during the PET recording. Building upon previous neuroimaging studies, we supposed an association between EEG-vigilance and normalized brain [(18)F]FDG-uptake (nFDGu) as measured by [(18)F]FDG-PET. For the first time, the present study exploratively investigated this association in a routine diagnostic work-up. MATERIALS AND METHODS Simultaneous 31-channel EEG and [(18)F]FDG-PET under resting conditions were acquired from 14 patients with depressive episode or mild cognitive impairment (MCI). EEG-vigilance was automatically classified by using the VIGALL algorithm (Vigilance Algorithm Leipzig). A nonparametric voxelwise simple linear regression with vigilance measure as predictor and nFDGu as criterion was performed using the Statistical nonParametric Mapping toolbox. RESULTS The main finding was a significant negative correlation between vigilance measure and nFDGu in bilateral frontal and temporal regions, bilateral cingulate gyrus and right thalamus with vigilance-related changes of nFDGu between 17.1 and 44.4%. DISCUSSION Simultaneous EEG and [(18)F]FDG-PET under resting conditions revealed that brain regions associated with EEG-vigilance partly overlapped with regions of impaired nFDGu in depression and MCI, as reported by previous studies. Vigilance-related changes of nFDGu were about the same magnitude as disease-related metabolic changes in patients with affective disorder or memory impairment as reported in previous studies. Therefore, our data suggest that differences in EEG-vigilance might influence alterations of nFDGu in disorders such as depression or MCI. Whether this possible impact of vigilance on nFDGu should be taken into account during the routine diagnostic application of [(18)F]FDG-PET has to be explored in future studies with larger patient groups.


The International Journal of Neuropsychopharmacology | 2011

The serotonin transporter availability in untreated early-onset and late-onset patients with obsessive-compulsive disorder.

Swen Hesse; Katarina Stengler; Ralf Regenthal; Marianne Patt; Georg-Alexander Becker; Annegret Franke; Heike Knüpfer; Philipp M. Meyer; Julia Luthardt; Ina Jahn; Donald Lobsien; Wolfgang Heinke; Peter Brust; Ulrich Hegerl; Osama Sabri

The pathogenetic role of central serotonin transporters (SERT) in obsessive-compulsive disorder (OCD) has been investigated in vivo by positron emission tomography (PET) or single-photon emission computed tomography (SPECT) studies with inconsistent results. This might reflect methodological differences but possibly also the pathophysiological heterogeneity of the disorder, i.e. the age at onset of OCD. The aim of our study was to compare SERT availability in patients with OCD to healthy controls (HC) taking into account the onset type, other factors and covariates (e.g. SERT genotype, age, depression level, gender). We studied 19 drug-naive OCD patients (36±13 yr, eight females) with early onset (EO-OCD, n=6) or with late onset (LO-OCD, n=13), and 21 HC (38±8 yr, nine females) with PET and the SERT-selective radiotracer [11C]DASB. Statistical models indicated that a variety of covariates and their interaction influenced SERT availability measured by distribution volume ratios (DVR). These models revealed significant effects of onset type on DVR with lower values in LO-OCD (starting at age 18 yr) compared to EO-OCD and HC in limbic (e.g. the amygdala), paralimbic brain areas (the anterior cingulate cortex), the nucleus accumbens and striatal regions, as well as borderline significance in the thalamus and the hypothalamus. The putamen, nucleus accumbens and hypothalamus were found with significant interaction between two SERT gene polymorphisms (SERT-LPR and VNTR). These findings suggest that late but not early onset of OCD is associated with abnormally low SERT availability. In part, functional polymorphisms of the SERT gene might determine the differences.


NeuroImage | 2015

First-in-human PET quantification study of cerebral α4β2* nicotinic acetylcholine receptors using the novel specific radioligand (−)-( 18 F)Flubatine☆

Osama Sabri; Georg-Alexander Becker; Philipp M. Meyer; Swen Hesse; Stephan Wilke; Susanne Graef; Marianne Patt; Julia Luthardt; Gudrun Wagenknecht; Alexander Hoepping; René Smits; Annegret Franke; Bernhard Sattler; Bernd Habermann; Petra Neuhaus; Steffen Fischer; Solveig Tiepolt; Winnie Deuther-Conrad; Henryk Barthel; Peter Schönknecht; Peter Brust

α4β2* nicotinic receptors (α4β2* nAChRs) could provide a biomarker in neuropsychiatric disorders (e.g., Alzheimers and Parkinsons diseases, depressive disorders, and nicotine addiction). However, there is a lack of α4β2* nAChR specific PET radioligands with kinetics fast enough to enable quantification of nAChR within a reasonable time frame. Following on from promising preclinical results, the aim of the present study was to evaluate for the first time in humans the novel PET radioligand (-)-[(18)F]Flubatine, formerly known as (-)-[(18)F]NCFHEB, as a tool for α4β2* nAChR imaging and in vivo quantification. Dynamic PET emission recordings lasting 270min were acquired on an ECAT EXACT HR+ scanner in 12 healthy male non-smoking subjects (71.0±5.0years) following the intravenous injection of 353.7±9.4MBq of (-)-[(18)F]Flubatine. Individual magnetic resonance imaging (MRI) was performed for co-registration. PET frames were motion-corrected, before the kinetics in 29 brain regions were characterized using 1- and 2-tissue compartment models (1TCM, 2TCM). Given the low amounts of metabolite present in plasma, we tested arterial input functions with and without metabolite corrections. In addition, pixel-based graphical analysis (Logan plot) was used. The models goodness of fit, with and without metabolite correction was assessed by Akaikes information criterion. Model parameters of interest were the total distribution volume VT (mL/cm(3)), and the binding potential BPND relative to the corpus callosum, which served as a reference region. The tracer proved to have high stability in vivo, with 90% of the plasma radioactivity remaining as untransformed parent compound at 90min, fast brain kinetics with rapid uptake and equilibration between free and receptor-bound tracer. Adequate fits of brain TACs were obtained with the 1TCM. VT could be reliably estimated within 90min for all regions investigated, and within 30min for low-binding regions such as the cerebral cortex. The rank order of VT by region corresponded well with the known distribution of α4β2* receptors (VT [thalamus] 27.4±3.8, VT [putamen] 12.7±0.9, VT [frontal cortex] 10.0±0.8, and VT [corpus callosum] 6.3±0.8). The BPND, which is a parameter of α4β2* nAChR availability, was 3.41±0.79 for the thalamus, 1.04±0.25 for the putamen and 0.61±0.23 for the frontal cortex, indicating high specific tracer binding. Use of the arterial input function without metabolite correction resulted in a 10% underestimation in VT, and was without important biasing effects on BPND. Altogether, kinetics and imaging properties of (-)-[(18)F]Flubatine appear favorable and suggest that (-)-[(18)F]Flubatine is a very suitable and clinically applicable PET tracer for in vivo imaging of α4β2* nAChRs in neuropsychiatric disorders.


Journal of Cerebral Blood Flow and Metabolism | 2015

Simultaneous PET/Mri in Stroke: A Case Series

Peter Werner; Dorothee Saur; Vilia Zeisig; Barbara Ettrich; Marianne Patt; Bernhard Sattler; Thies Jochimsen; Donald Lobsien; Philipp M. Meyer; Florian Then Bergh; Antje Y. Dreyer; Johannes Boltze; Joseph Classen; Dominik Fritzsch; Karl-Titus Hoffmann; Osama Sabri; Henryk Barthel

Prospective studies on magnetic resonance imaging (MRI)-guided systemic thrombolysis 44.5 hours after stroke onset did not reach their primary end points. It was discussed and observed in post hoc data re-assessment that this was partly because of limited MRI accuracy to measure critical hypoperfusion. We report the first cases of simultaneous [15O]H2O-positron emission tomography (PET)/MRI in stroke patients and an ovine model. Discrepancies between simultaneously obtained PET and MRI readouts were observed that might explain the above current limitations of stroke MRI. By offering highly complementary information, [15O]H2O-PET/MRI might help to identify critically hypoperfused tissue resulting in an improved patient stratification in thrombolysis trials.


Journal of Neurology | 2008

Effects of subthalamic nucleus stimulation on striatal dopaminergic transmission in patients with Parkinson’s disease within one-year follow-up

Swen Hesse; Karl Strecker; Dirk Winkler; Julia Luthardt; Christoph Scherfler; Annegret Reupert; Christian Oehlwein; Henryk Barthel; Jens-Peter Schneider; Florian Wegner; Philipp M. Meyer; Jürgen Meixensberger; Osama Sabri; Johannes Schwarz

The mechanisms by which deep brain stimulation (DBS) of the subthalamic nucleus (STN) leads to clinical benefit in Parkinson’s disease (PD), especially with regard to dopaminergic transmission, remain unclear. Therefore, the objective of our study was to evaluate alterations of synaptic dopaminergic signaling following bilateral STN-DBS in advanced PD within a one-year follow-up. We used [123I]FP-CIT single-photon emission computed tomography (SPECT) to measure dopamine transporter (DAT) availability and [123I]IBZM SPECT to assess dopamine D2 receptor (D2R) availability (stimulator ON condition).Patients (n = 18) showed a tendency towards a better suppression of symptoms after STN-DBS (Unified Parkinson’s Disease Rating Scale motor score with medication decreased from 24. 1 ± 16. 1 to 15. 4 ± 7. 45; p = 0. 002) while medication was strongly reduced (61 % reduction of levodopa equivalent units; p < 0. 0001). No changes of striatal [123I]FP-CIT binding and an increase of [123I]IBZM binding up to 16 % (p < 0. 05) between pre-surgery and follow-up investigations were noticed. These data show that clinical improvement and reduction of dopaminergic drugs in patients with advanced PD undergoing bilateral STN-DBS are paralleled by stable DAT and recovery of striatal D2R availability 12 months after surgery.


European Journal of Nuclear Medicine and Molecular Imaging | 2014

Altered serotonin transporter availability in patients with multiple sclerosis

Swen Hesse; Franziska Moeller; David Petroff; Donald Lobsien; Julia Luthardt; Ralf Regenthal; Georg-Alexander Becker; Marianne Patt; Eva Thomae; Anita Seese; Philipp M. Meyer; Florian Then Bergh; Osama Sabri

PurposeModulation of the immune system by the CNS may involve serotonergic regulation via the brain serotonin transporters (SERT). This regulation may be disturbed in patients with CNS disorders including multiple sclerosis (MS). Central serotonergic mechanisms have not been investigated in MS by in vivo imaging. The objective of the study was to assess the availability of SERT in antidepressant-naive patients with MS by means of PET.MethodsIncluded in this study were 23 patients with MS and 22 matched healthy volunteers who were investigated with PET and the SERT-selective marker [11C]DASB, and distribution volume ratios were determined. Clinical assessment of the patients included the expanded disability status scale, the MS fatigue scale Würzburger Erschöpfungsinventar bei MS (WEIMuS) and the Beck Depression Inventory (BDI). The PET data were analysed with both volume-of-interest and voxel-based analyses to determine regional SERT availability.ResultsPatients had lower SERT availability in the cingulate cortex, the thalamus and the insula, and increased availability in the orbitofrontal cortex. Patients with relapsing/remitting MS tended to have lower SERT in the hippocampus, whereas patients with primary progressive disease showed increased SERT availability in prefrontal regions. There was a positive correlation between SERT availability in the insula and both depression and fatigue scores (r = 0.56 vs. BDI, p = 0.02; r = 0.49 vs. WEIMuS, p = 0.05).ConclusionSerotonergic neurotransmission in MS patients is altered in limbic and paralimbic regions as well as in the frontal cortex that this appears to contribute to psychiatric symptoms of MS.


International Journal of Obesity | 2016

The central nervous norepinephrine network links a diminished sense of emotional well-being to an increased body weight.

Melasch J; Michael Rullmann; Anja Hilbert; Julia Luthardt; Georg-Alexander Becker; Marianne Patt; Arno Villringer; Katrin Arélin; Philipp M. Meyer; Lobsien D; Yu-Shin Ding; Osama Sabri; Swen Hesse; Burkhard Pleger

Objectives:The neurobiological mechanisms linking obesity to emotional distress remain largely undiscovered.Methods:In this pilot study, we combined positron emission tomography, using the norepinephrine transporter (NET) tracer [11C]-O-methylreboxetine, with functional connectivity magnetic resonance imaging, the Beck depression inventory (BDI), and the impact of weight on quality of life–Lite questionnaire (IWQOL–Lite), to investigate the role of norepinephrine in the severity of depression (BDI), as well as in the loss of emotional well-being with body weight (IWQOL–Lite).Results:In a small group of lean-to-morbidly obese individuals (n=20), we show that an increased body mass index (BMI) is related to a lowered NET availability within the hypothalamus, known as the brain’s homeostatic control site. The hypothalamus displayed a strengthened connectivity in relation to the individual hypothalamic NET availability to the anterior insula/frontal operculum, as well as the medial orbitofrontal cortex, assumed to host the primary and secondary gustatory cortex, respectively (n=19). The resting-state activity in these two regions was correlated positively to the BMI and IWQOL–Lite scores, but not to the BDI, suggesting that the higher the resting-state activity in these regions, and hence the higher the BMI, the stronger the negative impact of the body weight on the individual’s emotional well-being was.Conclusions:This pilot study suggests that the loss in emotional well-being with weight is embedded within the central norepinephrine network.

Collaboration


Dive into the Philipp M. Meyer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge