Philipp Thiel
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Philipp Thiel.
Angewandte Chemie | 2012
Philipp Thiel; Markus Kaiser; Christian Ottmann
The modulation of protein-protein interactions (PPIs) has been recognized as one of the most challenging tasks in drug discovery. While their systematic development has long been considered as intractable, this view has changed over the last years, with the first drug candidates undergoing clinical studies. To date, the vast majority of PPI modulators are interaction inhibitors. However, in many biological contexts a prolonged lifespan of a PPI might be desirable, calling for the complementary approach of PPI stabilization. In fact, nature offers impressive examples of this concept and some PPI-stabilizing natural products have already found application as important drugs. Moreover, directed small-molecule stabilization has recently been demonstrated. Therefore, it is time to take a closer look at the constructive side of modulating PPIs.
Molecular and Cellular Biology | 2010
Manuela Molzan; Benjamin Schumacher; Corinna Ottmann; Angela Baljuls; Lisa Polzien; Michael Weyand; Philipp Thiel; Rolf Rose; Micheline Rose; Philipp Kuhenne; Markus Kaiser; Ulf R. Rapp; Jürgen Kuhlmann; Christian Ottmann
ABSTRACT The Ras-RAF-mitogen-activated protein kinase (Ras-RAF-MAPK) pathway is overactive in many cancers and in some developmental disorders. In one of those disorders, namely, Noonan syndrome, nine activating C-RAF mutations cluster around Ser259, a regulatory site for inhibition by 14-3-3 proteins. We show that these mutations impair binding of 14-3-3 proteins to C-RAF and alter its subcellular localization by promoting Ras-mediated plasma membrane recruitment of C-RAF. By presenting biophysical binding data, the 14-3-3/C-RAFpS259 crystal structure, and cellular analyses, we indicate a mechanistic link between a well-described human developmental disorder and the impairment of a 14-3-3/target protein interaction. As a broader implication of these findings, modulating the C-RAFSer259/14-3-3 protein-protein interaction with a stabilizing small molecule may yield a novel potential approach for treatment of diseases resulting from an overactive Ras-RAF-MAPK pathway.
FEBS Letters | 2010
Benjamin Schumacher; Justine Mondry; Philipp Thiel; Michael Weyand; Christian Ottmann
MINT‐7711931: 14‐3‐3 sigma (uniprotkb:P31947) and p53 (uniprotkb:P04637) bind (MI:0407) by isothermal titration calorimetry (MI:0065)
Chemistry & Biology | 2013
Carolin Anders; Yusuke Higuchi; Kristin Koschinsky; Maria Bartel; Benjamin Schumacher; Philipp Thiel; Hajime Nitta; Regina Preisig-Müller; Günter Schlichthörl; Vijay Renigunta; Junko Ohkanda; Jürgen Daut; Nobuo Kato; Christian Ottmann
Small-molecule stabilization of protein-protein interactions is an emerging field in chemical biology. We show how fusicoccanes, originally identified as fungal toxins acting on plants, promote the interaction of 14-3-3 proteins with the human potassium channel TASK-3 and present a semisynthetic fusicoccane derivative (FC-THF) that targets the 14-3-3 recognition motif (mode 3) in TASK-3. In the presence of FC-THF, the binding of 14-3-3 proteins to TASK-3 was increased 19-fold and protein crystallography provided the atomic details of the effects of FC-THF on this interaction. We also tested the functional effects of FC-THF on TASK channels heterologously expressed in Xenopus oocytes. Incubation with 10 μM FC-THF was found to promote the transport of TASK channels to the cell membrane, leading to a significantly higher density of channels at the surface membrane and increased potassium current.
Chemical Communications | 2013
Philipp Thiel; Lars Röglin; Nicole Meissner; Sven Hennig; Oliver Kohlbacher; Christian Ottmann
We report first non-covalent and exclusively extracellular inhibitors of 14-3-3 protein-protein interactions identified by virtual screening. Optimization by crystal structure analysis and in vitro binding assays yielded compounds capable of disrupting the interaction of 14-3-3σ with aminopeptidase N in a cellular assay.
Bioinformatics | 2009
Magdalena Feldhahn; Pierre Dönnes; Philipp Thiel; Oliver Kohlbacher
Summary: Over the last decade, immunoinformatics has made significant progress. Computational approaches, in particular the prediction of T-cell epitopes using machine learning methods, are at the core of modern vaccine design. Large-scale analyses and the integration or comparison of different methods become increasingly important. We have developed FRED, an extendable, open source software framework for key tasks in immunoinformatics. In this, its first version, FRED offers easily accessible prediction methods for MHC binding and antigen processing as well as general infrastructure for the handling of antigen sequence data and epitopes. FRED is implemented in Python in a modular way and allows the integration of external methods. Availability: FRED is freely available for download at http://www-bs.informatik.uni-tuebingen.de/Software/FRED. Contact: [email protected]
Nucleic Acids Research | 2008
Magdalena Feldhahn; Philipp Thiel; Mathias M. Schuler; Nina Hillen; Stefan Stevanovic; Hans-Georg Rammensee; Oliver Kohlbacher
Predicting the T-cell-mediated immune response is an important task in vaccine design and thus one of the key problems in computational immunomics. Various methods have been developed during the last decade and are available online. We present EpiToolKit, a web server that has been specifically designed to offer a problem-solving environment for computational immunomics. EpiToolKit offers a variety of different prediction methods for major histocompatibility complex class I and II ligands as well as minor histocompatibility antigens. These predictions are embedded in a user-friendly interface allowing refining, editing and constraining the searches conveniently. We illustrate the value of the approach with a set of novel tumor-associated peptides. EpiToolKit is available online at www.epitoolkit.org.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Lars Röglin; Philipp Thiel; Oliver Kohlbacher; Christian Ottmann
Small-molecule inhibitors of 14-3-3 protein–protein interactions could serve as valuable chemical biology tools and starting points for drug development. The article by Zhao et al. (1) described FOBISIN101 (1) (Fig. 1A), a pyridoxal-phosphate (PLP) derivative that inhibits 14-3-3 protein–protein interactions. The authors provided a crystal structure of 14-3-3ζ with PLP covalently bound to K120 [Protein Data Bank (PDB) ID code 3RDH] lacking the p-amino-benzoate moiety. As a mechanism, they propose X-ray–induced cleavage of the N=N bond. They suggest this mechanism could serve as a radiation-triggered anticancer prodrug concept.
Nucleic Acids Research | 2015
Orlando de Lange; Christina Wolf; Philipp Thiel; Jens Krüger; Christian Kleusch; Oliver Kohlbacher; Thomas Lahaye
Transcription Activator-Like Effectors (TALEs) of Xanthomonas bacteria are programmable DNA binding proteins with unprecedented target specificity. Comparative studies into TALE repeat structure and function are hindered by the limited sequence variation among TALE repeats. More sequence-diverse TALE-like proteins are known from Ralstonia solanacearum (RipTALs) and Burkholderia rhizoxinica (Bats), but RipTAL and Bat repeats are conserved with those of TALEs around the DNA-binding residue. We study two novel marine-organism TALE-like proteins (MOrTL1 and MOrTL2), the first to date of non-terrestrial origin. We have assessed their DNA-binding properties and modelled repeat structures. We found that repeats from these proteins mediate sequence specific DNA binding conforming to the TALE code, despite low sequence similarity to TALE repeats, and with novel residues around the BSR. However, MOrTL1 repeats show greater sequence discriminating power than MOrTL2 repeats. Sequence alignments show that there are only three residues conserved between repeats of all TALE-like proteins including the two new additions. This conserved motif could prove useful as an identifier for future TALE-likes. Additionally, comparing MOrTL repeats with those of other TALE-likes suggests a common evolutionary origin for the TALEs, RipTALs and Bats.
Journal of Chemical Information and Modeling | 2014
Philipp Thiel; Lisa Sach-Peltason; Christian Ottmann; Oliver Kohlbacher
The calculation of pairwise compound similarities based on fingerprints is one of the fundamental tasks in chemoinformatics. Methods for efficient calculation of compound similarities are of the utmost importance for various applications like similarity searching or library clustering. With the increasing size of public compound databases, exact clustering of these databases is desirable, but often computationally prohibitively expensive. We present an optimized inverted index algorithm for the calculation of all pairwise similarities on 2D fingerprints of a given data set. In contrast to other algorithms, it neither requires GPU computing nor yields a stochastic approximation of the clustering. The algorithm has been designed to work well with multicore architectures and shows excellent parallel speedup. As an application example of this algorithm, we implemented a deterministic clustering application, which has been designed to decompose virtual libraries comprising tens of millions of compounds in a short time on current hardware. Our results show that our implementation achieves more than 400 million Tanimoto similarity calculations per second on a common desktop CPU. Deterministic clustering of the available chemical space thus can be done on modern multicore machines within a few days.