Philippa C. Griffin
University of Melbourne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Philippa C. Griffin.
BMC Biology | 2011
Philippa C. Griffin; Charles Robin; Ary A. Hoffmann
BackgroundPolyploidy is important from a phylogenetic perspective because of its immense past impact on evolution and its potential future impact on diversification, survival and adaptation, especially in plants. Molecular population genetics studies of polyploid organisms have been difficult because of problems in sequencing multiple-copy nuclear genes using Sanger sequencing. This paper describes a method for sequencing a barcoded mixture of targeted gene regions using next-generation sequencing methods to overcome these problems.ResultsUsing 64 3-bp barcodes, we successfully sequenced three chloroplast and two nuclear gene regions (each of which contained two gene copies with up to two alleles per individual) in a total of 60 individuals across 11 species of Australian Poa grasses. This method had high replicability, a low sequencing error rate (after appropriate quality control) and a low rate of missing data. Eighty-eight percent of the 320 gene/individual combinations produced sequence reads, and >80% of individuals produced sufficient reads to detect all four possible nuclear alleles of the homeologous nuclear loci with 95% probability.We applied this method to a group of sympatric Australian alpine Poa species, which we discovered to share an allopolyploid ancestor with a group of American Poa species. All markers revealed extensive allele sharing among the Australian species and so we recommend that the current taxonomy be re-examined. We also detected hypermutation in the trnH-psbA marker, suggesting it should not be used as a land plant barcode region. Some markers indicated differentiation between Tasmanian and mainland samples. Significant positive spatial genetic structure was detected at <100 km with chloroplast but not nuclear markers, which may be a result of restricted seed flow and long-distance pollen flow in this wind-pollinated group.ConclusionsOur results demonstrate that 454 sequencing of barcoded amplicon mixtures can be used to reliably sample all alleles of homeologous loci in polyploid species and successfully investigate phylogenetic relationships among species, as well as to investigate phylogeographic hypotheses. This next-generation sequencing method is more affordable than and at least as reliable as bacterial cloning. It could be applied to any experiment involving sequencing of amplicon mixtures.
Evolutionary Applications | 2015
Steven L. Chown; Kathryn A. Hodgins; Philippa C. Griffin; John G. Oakeshott; Margaret Byrne; Ary A. Hoffmann
The rate of biological invasions is expected to increase as the effects of climate change on biological communities become widespread. Climate change enhances habitat disturbance which facilitates the establishment of invasive species, which in turn provides opportunities for hybridization and introgression. These effects influence local biodiversity that can be tracked through genetic and genomic approaches. Metabarcoding and metagenomic approaches provide a way of monitoring some types of communities under climate change for the appearance of invasives. Introgression and hybridization can be followed by the analysis of entire genomes so that rapidly changing areas of the genome are identified and instances of genetic pollution monitored. Genomic markers enable accurate tracking of invasive species’ geographic origin well beyond what was previously possible. New genomic tools are promoting fresh insights into classic questions about invading organisms under climate change, such as the role of genetic variation, local adaptation and climate pre‐adaptation in successful invasions. These tools are providing managers with often more effective means to identify potential threats, improve surveillance and assess impacts on communities. We provide a framework for the application of genomic techniques within a management context and also indicate some important limitations in what can be achieved.
Climate Change Responses | 2015
Ary A. Hoffmann; Philippa C. Griffin; Shannon Dillon; Renee A. Catullo; Rahul V. Rane; Margaret Byrne; Rebecca Jordan; John G. Oakeshott; Andrew R. Weeks; Leo Joseph; Peter J. Lockhart; Justin O. Borevitz; Carla M. Sgrò
Evolutionary adaptation drives biodiversity. So far, however, evolutionary thinking has had limited impact on plans to counter the effects of climate change on biodiversity and associated ecosystem services. This is despite habitat fragmentation diminishing the ability of populations to mount evolutionary responses, via reductions in population size, reductions in gene flow and reductions in the heterogeneity of environments that populations occupy. Research on evolutionary adaptation to other challenges has benefitted enormously in recent years from genomic tools, but these have so far only been applied to the climate change issue in a piecemeal manner. Here, we explore how new genomic knowledge might be combined with evolutionary thinking in a decision framework aimed at reducing the long-term impacts of climate change on biodiversity and ecosystem services. This framework highlights the need to rethink local conservation and management efforts in biodiversity conservation. We take a dynamic view of biodiversity based on the recognition of continuously evolving lineages, and we highlight when and where new genomic approaches are justified. In general, and despite challenges in developing genomic tools for non-model organisms, genomics can help management decide when resources should be redirected to increasing gene flow and hybridisation across climate zones and facilitating in situ evolutionary change in large heterogeneous areas. It can also help inform when conservation priorities need to shift from maintaining genetically distinct populations and species to supporting processes of evolutionary change. We illustrate our argument with particular reference to Australia’s biodiversity.
Ecology Letters | 2014
Philippa C. Griffin; Yvonne Willi
Cross-fertilisation predominates in eukaryotes, but shifts to self-fertilisation are common and ecologically and evolutionarily important. Reproductive assurance under outcross gamete limitation is one eco-evolutionary process held responsible for the shift to selfing. Although small effective population size is a situation where selfing plants could theoretically benefit from reproductive assurance, empirical tests of the role of population size are rare. Here, we show that selfing evolved repeatedly at range margins, where historical demographic processes produced low effective population sizes. Outcrossing populations of North American Arabidopsis lyrata have low genetic diversity at geographic margins, with a signature of post-glacial range expansion in the north and rear-edge isolation in the south. Selfing populations occur at the margins of two genetic groups and never in their interior. These results corroborate small effective population size as the promoter of self-fertilisation and have important implications for our understanding of species turnover, range limits and range dynamics.
Molecular Biology and Evolution | 2016
Marina Telonis-Scott; Carla M. Sgrò; Ary A. Hoffmann; Philippa C. Griffin
Repeated attempts to map the genomic basis of complex traits often yield different outcomes because of the influence of genetic background, gene-by-environment interactions, and/or statistical limitations. However, where repeatability is low at the level of individual genes, overlap often occurs in gene ontology categories, genetic pathways, and interaction networks. Here we report on the genomic overlap for natural desiccation resistance from a Pool-genome-wide association study experiment and a selection experiment in flies collected from the same region in southeastern Australia in different years. We identified over 600 single nucleotide polymorphisms associated with desiccation resistance in flies derived from almost 1,000 wild-caught genotypes, a similar number of loci to that observed in our previous genomic study of selected lines, demonstrating the genetic complexity of this ecologically important trait. By harnessing the power of cross-study comparison, we narrowed the candidates from almost 400 genes in each study to a core set of 45 genes, enriched for stimulus, stress, and defense responses. In addition to gene-level overlap, there was higher order congruence at the network and functional levels, suggesting genetic redundancy in key stress sensing, stress response, immunity, signaling, and gene expression pathways. We also identified variants linked to different molecular aspects of desiccation physiology previously verified from functional experiments. Our approach provides insight into the genomic basis of a complex and ecologically important trait and predicts candidate genetic pathways to explore in multiple genetic backgrounds and related species within a functional framework.
Annals of Botany | 2014
Philippa C. Griffin; Ary A. Hoffmann
BACKGROUND AND AIMS While molecular approaches can often accurately reconstruct species relationships, taxa that are incompletely differentiated pose a challenge even with extensive data. Such taxa are functionally differentiated, but may be genetically differentiated only at small and/or patchy regions of the genome. This issue is considered here in Poa tussock grass species that dominate grassland and herbfields in the Australian alpine zone. METHODS Previously reported tetraploidy was confirmed in all species by sequencing seven nuclear regions and five microsatellite markers. A Bayesian approach was used to co-estimate nuclear and chloroplast gene trees with an overall dated species tree. The resulting species tree was used to examine species structure and recent hybridization, and intertaxon fertility was tested by experimental crosses. KEY RESULTS Species tree estimation revealed Poa gunnii, a Tasmanian endemic species, as sister to the rest of the Australian alpine Poa. The taxa have radiated in the last 0·5-1·2 million years and the non-gunnii taxa are not supported as genetically distinct. Recent hybridization following past species divergence was also not supported. Ongoing gene flow is suggested, with some broad-scale geographic structure within the group. CONCLUSIONS The Australian alpine Poa species are not genetically distinct despite being distinguishable phenotypically, suggesting recent adaptive divergence with ongoing intertaxon gene flow. This highlights challenges in using conventional molecular taxonomy to infer species relationships in recent, rapid radiations.
Genetics | 2017
Philippa C. Griffin; Sandra B. Hangartner; Alexandre Fournier-Level; Ary A. Hoffmann
Adaptation to environmental stress is critical for long-term species persistence. With climate change and other anthropogenic stressors compounding natural selective pressures, understanding the nature of adaptation is as important as ever in evolutionary biology. In particular, the number of alternative molecular trajectories available for an organism to reach the same adaptive phenotype remains poorly understood. Here, we investigate this issue in a set of replicated Drosophila melanogaster lines selected for increased desiccation resistance—a classical physiological trait that has been closely linked to Drosophila species distributions. We used pooled whole-genome sequencing (Pool-Seq) to compare the genetic basis of their selection responses, using a matching set of replicated control lines for characterizing laboratory (lab-)adaptation, as well as the original base population. The ratio of effective population size to census size was high over the 21 generations of the experiment at 0.52–0.88 for all selected and control lines. While selected SNPs in replicates of the same treatment (desiccation-selection or lab-adaptation) tended to change frequency in the same direction, suggesting some commonality in the selection response, candidate SNP and gene lists often differed among replicates. Three of the five desiccation-selection replicates showed significant overlap at the gene and network level. All five replicates showed enrichment for ovary-expressed genes, suggesting maternal effects on the selected trait. Divergence between pairs of replicate lines for desiccation-candidate SNPs was greater than between pairs of control lines. This difference also far exceeded the divergence between pairs of replicate lines for neutral SNPs. Overall, while there was overlap in the direction of allele frequency changes and the network and functional categories affected by desiccation selection, replicates showed unique responses at all levels, likely reflecting hitchhiking effects, and highlighting the challenges in identifying candidate genes from these types of experiments when traits are likely to be polygenic.
F1000Research | 2017
Rafael C. Jimenez; Mateusz Kuzak; Monther Alhamdoosh; Michelle Barker; Bérénice Batut; Mikael Borg; Salvador Capella-Gutierrez; Neil Chue Hong; Martin Cook; Manuel Corpas; Madison Flannery; Leyla Garcia; Josep Ll. Gelpí; Simon Gladman; Carole A. Goble; Montserrat González Ferreiro; Alejandra Gonzalez-Beltran; Philippa C. Griffin; Björn Grüning; Jonas Hagberg; Petr Holub; Rob W. W. Hooft; Jon Ison; Daniel S. Katz; Brane Leskošek; Federico López Gómez; Luis J. Oliveira; David Mellor; Rowland Mosbergen; Nicola Mulder
Scientific research relies on computer software, yet software is not always developed following practices that ensure its quality and sustainability. This manuscript does not aim to propose new software development best practices, but rather to provide simple recommendations that encourage the adoption of existing best practices. Software development best practices promote better quality software, and better quality software improves the reproducibility and reusability of research. These recommendations are designed around Open Source values, and provide practical suggestions that contribute to making research software and its source code more discoverable, reusable and transparent. This manuscript is aimed at developers, but also at organisations, projects, journals and funders that can increase the quality and sustainability of research software by encouraging the adoption of these recommendations.
PLOS ONE | 2015
Marco Fracassetti; Philippa C. Griffin; Yvonne Willi
Sequencing pooled DNA of multiple individuals from a population instead of sequencing individuals separately has become popular due to its cost-effectiveness and simple wet-lab protocol, although some criticism of this approach remains. Here we validated a protocol for pooled whole-genome re-sequencing (Pool-seq) of Arabidopsis lyrata libraries prepared with low amounts of DNA (1.6 ng per individual). The validation was based on comparing single nucleotide polymorphism (SNP) frequencies obtained by pooling with those obtained by individual-based Genotyping By Sequencing (GBS). Furthermore, we investigated the effect of sample number, sequencing depth per individual and variant caller on population SNP frequency estimates. For Pool-seq data, we compared frequency estimates from two SNP callers, VarScan and Snape; the former employs a frequentist SNP calling approach while the latter uses a Bayesian approach. Results revealed concordance correlation coefficients well above 0.8, confirming that Pool-seq is a valid method for acquiring population-level SNP frequency data. Higher accuracy was achieved by pooling more samples (25 compared to 14) and working with higher sequencing depth (4.1× per individual compared to 1.4× per individual), which increased the concordance correlation coefficient to 0.955. The Bayesian-based SNP caller produced somewhat higher concordance correlation coefficients, particularly at low sequencing depth. We recommend pooling at least 25 individuals combined with sequencing at a depth of 100× to produce satisfactory frequency estimates for common SNPs (minor allele frequency above 0.05).
Evolution | 2016
Kelly M. Richardson; Michele Schiffer; Philippa C. Griffin; Siu F. Lee; Ary A. Hoffmann
Wolbachia infections have been described in several Drosophila species, but relatively few have been assessed for phenotypic effects. Cytoplasmic incompatibility (CI) is the most common phenotypic effect that has been detected, while some infections cause male killing or feminization, and many Wolbachia infections have few host effects. Here, we describe two new infections in a recently described species, Drosophila pandora, one of which causes near‐complete CI and near‐perfect maternal transmission (the “CI” strain). The other infection is a male killer (the “MK” strain), which we confirm by observing reinitiation of male production following tetracycline treatment. No incompatibility was detected in crosses between CI strain males and MK strain females, and rare MK males do not cause CI. Molecular analyses indicate that the CI and MK infections are distantly related and the CI infection is closely related to the wRi infection of Drosophila simulans. Two population surveys indicate that all individuals are infected with Wolbachia, but the MK infection is uncommon. Given patterns of incompatibility among the strains, the infection dynamics is expected to be governed by the relative fitness of the females, suggesting that the CI infection should have a higher fitness. This was evidenced by changes in infection frequencies and sex ratios in population cages initiated at different starting frequencies of the infections.
Collaboration
Dive into the Philippa C. Griffin's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputs