Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philippe G. Frank is active.

Publication


Featured researches published by Philippe G. Frank.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2003

Caveolin, Caveolae, and Endothelial Cell Function

Philippe G. Frank; Scott E. Woodman; David S. Park; Michael P. Lisanti

Abstract—Caveolae are 50- to 100-nm cell-surface plasma membrane invaginations observed in terminally differentiated cells. They are particularly abundant in endothelial cells, where they are believed to play a major role in the regulation of endothelial vesicular trafficking and signal transduction. The use of caveolin-1–deficient mice has provided many new insights into the roles of caveolae and caveolin-1 in the regulation of endothelial cell function. These novel findings suggest an important role for caveolin-1 in the pathogenesis of cancer, atherosclerosis, and vascular disease.


Journal of Biological Chemistry | 2002

Microvascular Hyperpermeability in Caveolin-1 (−/−) Knock-out Mice TREATMENT WITH A SPECIFIC NITRIC-OXIDE SYNTHASE INHIBITOR,l-NAME, RESTORES NORMAL MICROVASCULAR PERMEABILITY IN Cav-1 NULL MICE

William Schubert; Philippe G. Frank; Scott E. Woodman; Hideyuki Hyogo; David E. Cohen; Chi Wing Chow; Michael P. Lisanti

Microvascular permeability is mediated by (i) the caveolar transcytosis of molecules across endothelial cells and (ii) the paracellular movement of ions and nutrients. Recently, we derived Cav-1 (−/−) knock-out mice using standard homologous recombination techniques. These mice are viable but show a loss of endothelial cell caveolae and striking defects in caveolae-mediated endocytosis. Thus, a compensatory mechanism must be operating in these mice. One possible compensatory response would be an increase in the paracellular pathway, resulting in increased microvascular permeability. To test this hypothesis directly, we studied the microvascular permeability of Cav-1 null mice using a variety of complementary in vivo approaches. Radio-iodinated bovine serum albumin was injected into Cav-1-deficient mice, and its rate of clearance from the circulatory system was compared with that of wild type control mice. Our results indicate that iodinated bovine serum albumin is removed from the circulatory system of Cav-1-deficient mice at a substantially faster rate. To determine whether this defect is restricted to the paracellular movement of albumin, lungs from Cav-1-deficient mice were next perfused with the electron dense dye Ruthenium Red. Micrographs of lung endothelial cells from Cav-1-deficient mice demonstrate that the paracellular movement of Ruthenium Red is dramatically increased. In addition, electron micrographs of Cav-1-deficient lung capillaries reveal defects in tight junction morphology and abnormalities in capillary endothelial cell adhesion to the basement membrane. This defect in cell-substrate attachment is consistent with the postulated role of caveolin-1 in positively regulating integrin signaling. Because loss of caveolin-1 expression results in constitutive activation of eNOS activity, we also examined whether these increases in microvascular permeability are NO-dependent. Interestingly, treatment with l-NAME (a well established nitric-oxide synthase inhibitor) successfully reversed the microvascular hyperpermeability phenotype of Cav-1 knock-out mice. Thus, caveolin-1 plays a dual regulatory role in controlling microvascular permeability: (i) as a structural protein that is required for caveolae formation and caveolar transcytosis and (ii) as a tonic inhibitor of eNOS activity to negatively regulate the paracellular pathway.


American Journal of Pathology | 2002

Caveolin-1/3 Double-Knockout Mice Are Viable, but Lack Both Muscle and Non-Muscle Caveolae, and Develop a Severe Cardiomyopathic Phenotype

David S. Park; Scott E. Woodman; William Schubert; Alex W. Cohen; Philippe G. Frank; Madhulika Chandra; Jamshid Shirani; Babak Razani; Baiyu Tang; Linda A. Jelicks; Stephen M. Factor; Louis M. Weiss; Herbert B. Tanowitz; Michael P. Lisanti

The caveolin gene family consists of caveolins 1, 2, and 3. Caveolins 1 and 2 are co-expressed in many cell types, such as endothelial cells, fibroblasts, smooth muscle cells and adipocytes, where they form a heteroligomeric complex. In contrast, the expression of caveolin-3 is muscle-specific. Thus, the expression of caveolin-1 is required for caveolae formation in non-muscle cells, while the expression of caveolin-3 drives caveolae formation in striated muscle cell types (cardiac and skeletal). To create a truly caveolae-deficient mouse, we interbred Cav-1 null mice and Cav-3 null mice to generate Cav-1/Cav-3 double-knockout (Cav-1/3 dKO) mice. Here, we report that Cav-1/3 dKO mice are viable and fertile, despite the fact that they lack morphologically identifiable caveolae in endothelia, adipocytes, smooth muscle cells, skeletal muscle fibers, and cardiac myocytes. We also show that these mice are deficient in all three caveolin gene products, as caveolin-2 is unstable in the absence of caveolin-1. Interestingly, Cav-1/3 dKO mice develop a severe cardiomyopathy. At 2 months of age, analysis of Cav-1/3 dKO hearts via gated magnetic resonance imaging reveals a dramatic increase in left ventricular wall thickness, as compared with Cav-1-KO, Cav-3 KO, and wild-type mice. Further functional analysis of Cav-1/3 dKO hearts via transthoracic echocardiography demonstrates hypertrophy and dilation of the left ventricle, with a significant decrease in fractional shortening. As predicted, Northern analysis of RNA derived from the left ventricle of Cav-1/3 dKO mice shows a dramatic up-regulation of the atrial natriuretic factor message, a well-established biochemical marker of cardiac hypertrophy. Finally, histological analysis of Cav-1/3 dKO hearts reveals hypertrophy, disorganization, and degeneration of the cardiac myocytes, as well as chronic interstitial fibrosis and inflammation. Thus, dual ablation of both Cav-1 and Cav-3 genes in mice leads to a pleiotropic defect in caveolae formation and severe cardiomyopathy.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2004

Genetic Ablation of Caveolin-1 Confers Protection Against Atherosclerosis

Philippe G. Frank; Hyangkyu Lee; David S. Park; Narendra N. Tandon; Phillip E. Scherer; Michael P. Lisanti

Objective—The development of atherosclerosis is a process characterized by the accumulation of lipids in the form of modified lipoproteins in the subendothelial space. This initiating step is followed by the subsequent recruitment and proliferation of other cell types, including monocytes/macrophages and smooth muscle cells. Here, we evaluate the potential role of caveolae membrane domains in the pathogenesis of atherosclerosis by using apolipoprotein E-deficient (ApoE−/−) mice as a model system. Methods and Results—Caveolin-1 (Cav-1) is a principal structural protein component of caveolae membrane domains. To directly assess the in vivo role of caveolae and Cav-1 in atherosclerosis, we interbred Cav-1−/− mice with ApoE−/− mice. Interestingly, loss of Cav-1 resulted in a dramatic >2-fold increase in non-HDL plasma cholesterol levels in the ApoE−/− background. However, despite this hypercholesterolemia, we found that loss of Cav-1 gene expression was clearly protective against the development of aortic atheromas, with up to an ≈70% reduction in atherosclerotic lesion area. Mechanistically, we demonstrated that loss of Cav-1 resulted in the dramatic downregulation of certain proatherogenic molecules, namely, CD36 and vascular cell adhesion molecule-1. Conclusions—Taken together, our results indicate that loss of Cav-1 can counteract the detrimental effects of atherogenic lipoproteins. Thus, Cav-1 is a novel target for drug development in the pharmacologic prevention of atheroma formation. Our current data also provide the first molecular genetic evidence to support the hypothesis that caveolar transcytosis of modified lipoproteins (from the blood to the sub-endothelial space) is a critical initiating step in atherosclerosis.


Cell Cycle | 2010

Loss of stromal caveolin-1 leads to oxidative stress, mimics hypoxia and drives inflammation in the tumor microenvironment, conferring the "reverse Warburg effect": a transcriptional informatics analysis with validation.

Stephanos Pavlides; Aristotelis Tsirigos; Iset Vera; Neal Flomenberg; Philippe G. Frank; Mathew C. Casimiro; Chenguang Wang; Paolo Fortina; Sankar Addya; Richard G. Pestell; Ubaldo E. Martinez-Outschoorn; Federica Sotgia; Michael P. Lisanti

Cav-1 (-/-) deficient stromal cells are a new genetic model for myofibroblasts and cancer-associated fibroblasts. Using an unbiased informatics analysis of the transcriptional profile of Cav-1 (-/-) deficient mesenchymal stromal cells, we have now identified many of the major signaling pathways that are activated by a loss of Cav-1, under conditions of metabolic restriction (with low glucose media). Our informatics analysis suggests that a loss of Cav-1 induces oxidative stress, which mimics a constitutive pseudo-hypoxic state, leading to 1) aerobic glycolysis and 2) inflammation in the tumor stromal microenvironment. This occurs via the activation of 2 major transcription factors, namely HIF (aerobic glycolysis) and NF-kB (inflammation) in Cav-1 (-/-) stromal fibroblastic cells. Experimentally, we show that Cav-1 deficient stromal cells may possess defective mitochondria, due to the over-production of nitric oxide (NO), resulting in the tyrosine nitration of the mitochondrial respiratory chain components (such as complex I). Elevated levels of nitro-tyrosine were observed both in Cav-1 (-/-) stromal cells, and via acute knock-down with siRNA targeting Cav-1. Finally, metabolic restriction with mitochondrial (complex I) and glycolysis inhibitors was synthetically lethal with a Cav-1 (-/-) deficiency in mice. As such, Cav-1 deficient mice show a dramatically reduced mitochondrial reserve capacity. Thus, a mitochondrial defect in Cav-1 deficient stromal cells could drive oxidative stress, leading to aerobic glycolysis, and inflammation, in the tumor microenvironment. These stromal alterations may underlie the molecular basis of the “Reverse Warburg Effect”, and could provide the key to targeted anti-cancer therapies using metabolic inhibitors. In direct support of these findings, the transcriptional profile of Cav-1 (-/-) stromal cells overlaps significantly with Alzheimer’s disease, which is characterized by oxidative stress, NO over-production (peroxynitrite formation), inflammation, hypoxia, and mitochondrial dysfunction. We conclude that Cav-1 (-/-) deficient mice are a new whole-body animal model for an activated lethal tumor micro-environment, i.e., “tumor stroma” without the tumor. Since Cav-1 (-/-) mice are also an established animal model for pro-fibrotic disease, our current results may have implications for understanding the pathogenesis of scleroderma (systemic sclerosis) and pulmonary fibrosis, which are also related to abnormal mesenchymal stem cell function.


American Journal of Pathology | 2003

Proteasome inhibitor (MG-132) treatment of mdx mice rescues the expression and membrane localization of dystrophin and dystrophin-associated proteins

Gloria Bonuccelli; Federica Sotgia; William Schubert; David S. Park; Philippe G. Frank; Scott E. Woodman; Luigi Insabato; Michael Cammer; Carlo Minetti; Michael P. Lisanti

Dystrophin, the protein product of the Duchenne muscular dystrophy (DMD) gene, is absent in the skeletal muscle of DMD patients and mdx mice. At the plasma membrane of skeletal muscle fibers, dystrophin associates with a multimeric protein complex, termed the dystrophin-glycoprotein complex (DGC). Protein members of this complex are normally absent or greatly reduced in dystrophin-deficient skeletal muscle fibers, and are thought to undergo degradation through an unknown pathway. As such, we reasoned that inhibition of the proteasomal degradation pathway might rescue the expression and subcellular localization of dystrophin-associated proteins. To test this hypothesis, we treated mdx mice with the well-characterized proteasomal inhibitor MG-132. First, we locally injected MG-132 into the gastrocnemius muscle, and observed the outcome after 24 hours. Next, we performed systemic treatment using an osmotic pump that allowed us to deliver different concentrations of the proteasomal inhibitor, over an 8-day period. By immunofluorescence and Western blot analysis, we show that administration of the proteasomal inhibitor MG-132 effectively rescues the expression levels and plasma membrane localization of dystrophin, beta-dystroglycan, alpha-dystroglycan, and alpha-sarcoglycan in skeletal muscle fibers from mdx mice. Furthermore, we show that systemic treatment with the proteasomal inhibitor 1) reduces muscle membrane damage, as revealed by vital staining (with Evans blue dye) of the diaphragm and gastrocnemius muscle isolated from treated mdx mice, and 2) ameliorates the histopathological signs of muscular dystrophy, as judged by hematoxylin and eosin staining of muscle biopsies taken from treated mdx mice. Thus, the current study opens new and important avenues in our understanding of the pathogenesis of DMD. Most importantly, these new findings may have clinical implications for the pharmacological treatment of patients with DMD.


American Journal of Pathology | 2011

Role of Cholesterol in the Development and Progression of Breast Cancer

Gemma Llaverias; Christiane Danilo; Isabelle Mercier; Kristin M. Daumer; Franco Capozza; Terence M. Williams; Federica Sotgia; Michael P. Lisanti; Philippe G. Frank

Diet and obesity are important risk factors for cancer development. Many studies have suggested an important role for several dietary nutrients in the progression and development of breast cancer. However, few studies have specifically addressed the role of components of a Western diet as important factors involved in breast cancer initiation and progression. The present study examined the role of cholesterol in the regulation of tumor progression in a mouse model of mammary tumor formation. The results suggest that cholesterol accelerates and enhances tumor formation. In addition, tumors were more aggressive, and tumor angiogenesis was enhanced. Metabolism of cholesterol was also examined in this mouse model. It was observed that plasma cholesterol levels were reduced during tumor development but not prior to its initiation. These data provide new evidence for an increased utilization of cholesterol by tumors and for its role in tumor formation. Taken together, these results imply that an increase in plasma cholesterol levels accelerates the development of tumors and exacerbates their aggressiveness.


Cell Cycle | 2010

The reverse Warburg effect: glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts.

Gloria Bonuccelli; Diana Whitaker-Menezes; Remedios Castello-Cros; Stephanos Pavlides; Richard G. Pestell; Alessandro Fatatis; Agnieszka K. Witkiewicz; Matthew G. Vander Heiden; Gemma Migneco; Barbara Chiavarina; Philippe G. Frank; Franco Capozza; Neal Flomenberg; Ubaldo E. Martinez-Outschoorn; Federica Sotgia; Michael P. Lisanti

We and others have previously identified a loss of stromal caveolin-1 (Cav-1) in cancer-associated fibroblasts (CAFs) as a powerful single independent predictor of breast cancer patient tumor recurrence, metastasis, tamoxifen-resistance, and poor clinical outcome. However, it remains unknown how loss of stromal Cav-1 mediates these effects clinically. To mechanistically address this issue, we have now generated a novel human tumor xenograft model. In this two-component system, nude mice are co-injected with i) human breast cancer cells (MDA-MB-231), and ii) stromal fibroblasts (wild-type (WT) versus Cav-1 (-/-) deficient). This allowed us to directly evaluate the effects of a Cav-1 deficiency solely in the tumor stromal compartment. Here, we show that Cav-1-deficient stromal fibroblasts are sufficient to promote both tumor growth and angiogenesis, and to recruit Cav-1 (+) micro-vascular cells. Proteomic analysis of Cav-1-deficient stromal fibroblasts indicates that these cells upregulate the expression of glycolytic enzymes, a hallmark of aerobic glycolysis (the Warburg effect). Thus, Cav-1-deficient stromal fibroblasts may contribute towards tumor growth and angiogenesis, by providing energy-rich metabolites in a paracrine fashion. We have previously termed this new idea the “Reverse Warburg Effect”. In direct support of this notion, treatment of this xenograft model with glycolysis inhibitors functionally blocks the positive effects of Cav-1-deficient stromal fibroblasts on breast cancer tumor growth. Thus, pharmacologically-induced metabolic restriction (via treatment with glycolysis inhibitors) may be a promising new therapeutic strategy for breast cancer patients that lack stromal Cav-1 expression. We also identify the stromal expression of PKM2 and LDH-B as new candidate biomarkers for the “Reverse Warburg Effect” or “Stromal-Epithelial Metabolic Coupling” in human breast cancers.


American Journal of Physiology-cell Physiology | 2008

Role of caveolin-1 in the regulation of lipoprotein metabolism

Philippe G. Frank; Stephanos Pavlides; Michelle W.-C. Cheung; Kristin M. Daumer; Michael P. Lisanti

Lipoprotein metabolism plays an important role in the development of several human diseases, including coronary artery disease and the metabolic syndrome. A good comprehension of the factors that regulate the metabolism of the various lipoproteins is therefore key to better understanding the variables associated with the development of these diseases. Among the players identified are regulators such as caveolins and caveolae. Caveolae are small plasma membrane invaginations that are observed in terminally differentiated cells. Their most important protein marker, caveolin-1, has been shown to play a key role in the regulation of several cellular signaling pathways and in the regulation of plasma lipoprotein metabolism. In the present paper, we have examined the role of caveolin-1 in lipoprotein metabolism using caveolin-1-deficient (Cav-1(-/-)) mice. Our data show that, while Cav-1(-/-) mice show increased plasma triglyceride levels, they also display reduced hepatic very low-density lipoprotein (VLDL) secretion. Additionally, we also found that a caveolin-1 deficiency is associated with an increase in high-density lipoprotein (HDL), and these HDL particles are enriched in cholesteryl ester in Cav-1(-/-) mice when compared with HDL obtained from wild-type mice. Finally, our data suggest that a caveolin-1 deficiency prevents the transcytosis of LDL across endothelial cells, and therefore, that caveolin-1 may be implicated in the regulation of plasma LDL levels. Taken together, our studies suggest that caveolin-1 plays an important role in the regulation of lipoprotein metabolism by controlling their plasma levels as well as their lipid composition. Thus caveolin-1 may also play an important role in the development of atherosclerosis.


Cell and Tissue Research | 2009

Caveolae and transcytosis in endothelial cells: role in atherosclerosis

Philippe G. Frank; Stephanos Pavlides; Michael P. Lisanti

The endothelium plays an important role in the regulation of molecular exchanges between the blood and peripheral tissues. The transport of molecules between tissues must be tightly controlled in order to maintain homeostasis between the different organs of the body. The endothelial transcytosis pathway has been shown to direct the transfer of proteins and solutes and therefore to act as a filtering system. This transport mode has been demonstrated to involve plasma-membrane vesicles that may be transferred with their cargo components from the apical to the basal side of endothelial cells. Among the vesicles implicated in the regulation of transcytosis, caveolae, which are 50 to 100-nm plasma-membrane invaginations, have been reported to play an essential part. In this paper, we review the function of caveolae and their major protein component (i.e., caveolin-1) in the regulation of endothelial transcytosis. The roles of caveolae in vascular diseases, such as atherosclerosis, are discussed.

Collaboration


Dive into the Philippe G. Frank's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard G. Pestell

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gloria Bonuccelli

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Stephanos Pavlides

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chenguang Wang

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

David S. Park

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Franco Capozza

Thomas Jefferson University

View shared research outputs
Researchain Logo
Decentralizing Knowledge