Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philippe Hinsinger is active.

Publication


Featured researches published by Philippe Hinsinger.


Plant and Soil | 2001

Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review

Philippe Hinsinger

In most soils, inorganic phosphorus occurs at fairly low concentrations in the soil solution whilst a large proportion of it is more or less strongly held by diverse soil minerals. Phosphate ions can indeed be adsorbed onto positively charged minerals such as Fe and Al oxides. Phosphate (P) ions can also form a range of minerals in combination with metals such as Ca, Fe and Al. These adsorption/desorption and precipitation/dissolution equilibria control the concentration of P in the soil solution and, thereby, both its chemical mobility and bioavailability. Apart from the concentration of P ions, the major factors that determine those equilibria as well as the speciation of soil P are (i) the pH, (ii) the concentrations of anions that compete with P ions for ligand exchange reactions and (iii) the concentrations of metals (Ca, Fe and Al) that can coprecipitate with P ions. The chemical conditions of the rhizosphere are known to considerably differ from those of the bulk soil, as a consequence of a range of processes that are induced either directly by the activity of plant roots or by the activity of rhizosphere microflora. The aim of this paper is to give an overview of those chemical processes that are directly induced by plant roots and which can affect the concentration of P in the soil solution and, ultimately, the bioavailability of soil inorganic P to plants. Amongst these, the uptake activity of plant roots should be taken into account in the first place. A second group of activities which is of major concern with respect to P bioavailability are those processes that can affect soil pH, such as proton/bicarbonate release (anion/cation balance) and gaseous (O2/CO2) exchanges. Thirdly, the release of root exudates such as organic ligands is another activity of the root that can alter the concentration of P in the soil solution. These various processes and their relative contributions to the changes in the bioavailability of soil inorganic P that can occur in the rhizosphere can considerably vary with (i) plant species, (ii) plant nutritional status and (iii) ambient soil conditions, as will be stressed in this paper. Their possible implications for the understanding and management of P nutrition of plants will be briefly addressed and discussed.


Plant and Soil | 2003

Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review

Philippe Hinsinger; Claude Plassard; Caixian Tang; Benoît Jaillard

The aim of the present review is to define the various origins of root-mediated changes of pH in the rhizosphere, i.e., the volume of soil around roots that is influenced by root activities. Root-mediated pH changes are of major relevance in an ecological perspective as soil pH is a critical parameter that influences the bioavailability of many nutrients and toxic elements and the physiology of the roots and rhizosphere microorganisms. A major process that contributes root-induced pH changes in the rhizosphere is the release of charges carried by H+ or OH− to compensate for an unbalanced cation–anion uptake at the soil–root interface. In addition to the ions taken up by the plant, all the ions crossing the plasma membrane of root cells (e.g., organic anions exuded by plant roots) should be taken into account, since they all need to be balanced by an exchange of charges, i.e., by a release of either H+ or OH−. Although poorly documented, root exudation and respiration can contribute some proportion of rhizosphere pH decrease as a result of a build-up of the CO2 concentration. This will form carbonic acid in the rhizosphere that may dissociate in neutral to alkaline soils, and result in some pH decrease. Ultimately, plant roots and associated microorganisms can also alter rhizosphere pH via redox-coupled reactions. These various processes involved in root-mediated pH changes in the rhizosphere also depend on environmental constraints, especially nutritional constraints to which plants can respond. This is briefly addressed, with a special emphasis on the response of plant roots to deficiencies of P and Fe and to Al toxicity. Finally, soil pH itself and pH buffering capacity also have a dramatic influence on root-mediated pH changes.


Nature Communications | 2013

Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe

Josep Peñuelas; Benjamin Poulter; Jordi Sardans; Philippe Ciais; Marijn van der Velde; Laurent Bopp; Olivier Boucher; Yves Goddéris; Philippe Hinsinger; Joan Llusià; Elise Nardin; Sara Vicca; Michael Obersteiner; Ivan A. Janssens

The availability of carbon from rising atmospheric carbon dioxide levels and of nitrogen from various human-induced inputs to ecosystems is continuously increasing; however, these increases are not paralleled by a similar increase in phosphorus inputs. The inexorable change in the stoichiometry of carbon and nitrogen relative to phosphorus has no equivalent in Earths history. Here we report the profound and yet uncertain consequences of the human imprint on the phosphorus cycle and nitrogen:phosphorus stoichiometry for the structure, functioning and diversity of terrestrial and aquatic organisms and ecosystems. A mass balance approach is used to show that limited phosphorus and nitrogen availability are likely to jointly reduce future carbon storage by natural ecosystems during this century. Further, if phosphorus fertilizers cannot be made increasingly accessible, the crop yields projections of the Millennium Ecosystem Assessment imply an increase of the nutrient deficit in developing regions.


Environmental Pollution | 2003

Copper bioavailability and extractability as related to chemical properties of contaminated soils from a vine-growing area

V Chaignon; I Sanchez-Neira; P Herrmann; B Jaillard; Philippe Hinsinger

Vineyard soils have been contaminated by Cu as a consequence of the long-term use of Cu salts as fungicides against mildew. This work aimed at identifying which soil parameters were the best related to Cu bioavailability, as assessed by measuring the concentrations of Cu in shoots and roots of tomato cropped (in lab conditions) over a range of 29 (24 calcareous and five acidic) Cu-contaminated topsoils from a vine-growing area (22-398 mg Cu kg(-1)). Copper concentrations in tomato shoots remained in the adequate range and were independent of soil properties and soil Cu content. Conversely, strong, positive correlations were found between root Cu concentration, total soil Cu, EDTA- or K-pyrophosphate-extractable Cu and organic C contents in the 24 calcareous soils, suggesting a prominent role of organic matter in the retention and bioavailability of Cu. Such relations were not observed when including the five acidic soils in the investigated population, suggesting a major pH effect. Root Cu concentration appeared as a much more sensitive indicator of soil Cu bioavailability than shoot Cu concentration. Simple extractions routinely used in soil testing procedures (total and EDTA-extractable Cu) were adequate indicators of Cu bioavailability for the investigated calcareous soils, but not when different soil types were considered (e.g. acidic versus calcareous soils).


Geochimica et Cosmochimica Acta | 2001

Plant-induced weathering of a basaltic rock: Experimental evidence

Philippe Hinsinger; Omar Neto Fernandes Barros; Marc F. Benedetti; Yves Noack; Gabriel Callot

Abstract The active role of higher plants in the weathering of silicate minerals and rocks is still a question for debate. The present work aimed at providing experimental evidence of the important role of a range of crop plants in such processes. In order to quantitatively assess the possible effect of these diverse plant species on the weathering of a basaltic rock, two laboratory experiments were carried out at room temperature. These compared the amounts of elements released from basalt when leached with a dilute salt solution in the presence or absence of crop plants grown for up to 36 days. For Si, Ca, Mg, and Na, plants resulted in an increase in the release rate by a factor ranging from 1 to 5 in most cases. Ca and Na seemed to be preferentially released relative to other elements, suggesting that plagioclase dissolved faster than the other constituents of the studied basalt. Negligible amounts of Fe were released in the absence of plants as a consequence of the neutral pH and atmospheric pO2 that were maintained in the leaching solution. However, the amounts of Fe released from basalt in the presence of plants were up to 100- to 500-fold larger than in the absence of plants, for banana and maize. The kinetics of dissolution of basalt in the absence of plants showed a constantly decreasing release rate over the whole duration of the experiment (36 days). No steady state value was reached both in the absence and presence of banana plants. However, in the latter case, the rates remained at a high initial level over a longer period of time (up to 15 days) before starting to decrease. For Fe, the maximum rate of release was reached beyond 4 days and this rate remained high up to 22 days of growth of banana. The possible mechanisms responsible for this enhanced release of elements from basalt in the presence of plants are discussed. Although these mechanisms need to be elucidated, the present results clearly show that higher plants can considerably affect the kinetics of dissolution of basalt rock. Therefore, they need to be taken into account when assessing the biogeochemical cycles of elements that are major nutrients for plants, such as Ca, Mg, and K, but also micronutrients such as Fe and ‘nonessential’ elements such as Si and Na.


Plant and Soil | 2002

Copper bioavailability and rhizosphere pH changes as affected by nitrogen supply for tomato and oilseed rape cropped on an acidic and a calcareous soil

V. Chaignon; F. Bedin; Philippe Hinsinger

Vineyard soils have been contaminated by long-term applications of copper salts as fungicides against mildew, raising the question of the bioavailability (and toxicity) of such accumulated Cu to cultivated plants which can replace vines. The aim of this study was to assess, in an acidic and a calcareous Cu-contaminated soil, how the extractability and bioavailability of soil Cu was affected by pH changes in the rhizosphere of two plant species (oilseed rape and tomato), in response to various forms of nitrogen supply (nitrate only or both nitrate and ammonium). Besides shoot analysis, the experimental approach used in the present work provided an easy access to both roots and rhizosphere soil. Roots of tomato and rape induced a systematic acidification in the calcareous soil while root-induced alkalinization occurred in the acidic soil. Whilst few differences were found between treatments in the calcareous soil, oilseed rape took up more Cu and also alkalinized its rhizosphere more strongly than tomato in the acidic soil. The growth of tomato roots was restricted in the acidic soil, while that of oilseed rape was not, suggesting that tomato was either more sensitive to soil acidity and/or Cu toxicity. A major finding was that, in the acidic soil, Cu bioavailability increased with increasing rhizosphere pH. This was largely due to the enhanced accumulation of Cu in the root compartment of both species with increasing rhizosphere pH. The hypothetical explanation proposed here is that Cu binding to root cell walls played a major role in the accumulation of Cu into the plant. Apoplasmic Cu (Cu bound to cell walls) would indeed be expected to increase with increasing pH as a consequence of the pH-dependency of the charges of cell wall constituents.


Plant and Soil | 1999

Dynamics of phosphorus in the rhizosphere of maize and rape grown on synthetic, phosphated calcite and goethite

Isabelle Bertrand; Philippe Hinsinger; Benoît Jaillard; Jean-Claude Arvieu

In calcareous soils the dynamics of phosphorus is controlled by calcite and iron oxides such as goethite which strongly retain P and consequently maintain low P concentrations in soil solution. Plants can drastically change chemical conditions in the rhizosphere, in particular by releasing H+ or OH− or by excreting organic anions. By modifying the dissolution/precipitation and desorption/adsorption equilibria, roots can influence the mobility of soil P. The aim of this work was to test whether H+ or OH− release can induce the mobilization of P in the rhizosphere of maize and rape supplied with NO3-N or NH4-N and grown on synthetic phosphated calcite or goethite as sole source of P. With P-calcite, the mobilization of P was generally related to the acidification of the rhizosphere. With P-goethite, rhizosphere acidification induced some increase of DTPA-extractable Fe and hence dissolution of goethite. Rhizosphere P was concomitantly depleted but the mechanisms involved are less clear. The difference in behavior of the two species is discussed.


Agronomy for Sustainable Development | 2015

Multiple cropping systems as drivers for providing multiple ecosystem services: from concepts to design

Sabrina Gaba; Françoise Lescourret; Simon Boudsocq; Jérôme Enjalbert; Philippe Hinsinger; Etienne-Pascal Journet; Marie-Laure Navas; Jacques Wery; Gaëtan Louarn; Eric Malézieux; Elise Pelzer; Marion Prudent; Harry Ozier-Lafontaine

Provisioning services, such as the production of food, feed, and fiber, have always been the main focus of agriculture. Since the 1950s, intensive cropping systems based on the cultivation of a single crop or a single cultivar, in simplified rotations or monocultures, and relying on extensive use of agrochemical inputs have been preferred to more diverse, self-sustaining cropping systems, regardless of the environmental consequences. However, there is increasing evidence that such intensive agroecosystems have led to a decline in biodiversity as well as threatening the environment and have damaged a number of ecosystem services such as the biogeochemical nutrient cycles and the regulation of climate and water quality. Consequently, the current challenge facing agriculture is to ensure the future of food production while reducing the use of inputs and limiting environmental impacts and the loss of biodiversity. Here, we review examples of multiple cropping systems that aim to use biotic interactions to reduce chemical inputs and provide more ecosystem services than just provisioning. Our main findings are the identification of underlying ecological processes and management strategies related to the provision of pairs of ecosystem services namely food production and a regulation service. We also found gaps between ecological knowledge and the constraints of agricultural practices in taking account of the interactions and possible trade-offs between multiple ecosystem services as well as socioeconomic constraints. We present guidelines for the design of multiple cropping systems combining ecological, agricultural, and genetic concepts and approaches.


Plant and Soil | 1999

Root uptake and distribution of radiocaesium from contaminated soils and the enhancement of Cs adsorption in the rhizosphere

A. Guivarch; Philippe Hinsinger; S. Staunton

Uptake by roots from contaminated soil is one of the key steps in the entry of radiocaesium into the food chain. We have measured the uptake by roots of radiocaesium and its transfer to shoots of a heathland grass, sheep fescue (Festuca ovina L.) from two contrasting agricultural soils, a sandy podzol and a clayey calcareous soil. A culture device which keeps the roots separate from the soil was used thus allowing rhizosphere soil to be obtained easily and enhancing the effect of root action. Biomass production and 137Cs in shoots and roots were recorded. Cs adsorption was studied on both the initial, nonrhizosphere soil and on rhizosphere soil in dilute soil suspension. Cs desorption was measured by resuspending subsamples of contaminated soil in solutions containing various concentrations of stable Cs. The proportion of Cs fixed, i.e. not readily desorbable, was calculated by comparison of the adsorption and desorption isotherms. Uptake by roots varied considerably between soils and did not appear to be diffusion limited. Root-to-shoot transfer did not differ for the two soils studied. Root action considerably enhanced Cs adsorption on the soils, particularly the in sandy podzol with a low Cs affinity. The value of Kd was increased by up to an order of magnitude. A large proportion of adsorbed Cs was found to be fixed, the Kd was up to seven times greater on desorption than adsorption, indicating that up to 80% of adsorbed Cs was not readily exchangeable. Root action had little effect on the fixed fraction.


Plant and Soil | 2004

Zinc mobilisation from a contaminated soil by three genotypes of tobacco as affected by soil and rhizosphere pH

¡Aff ¿Nancy Loosemore; Anne Straczek; Philippe Hinsinger; Beno^it Jaillard

The aim of this research was to evaluate the effect of soil and rhizosphere pH on the mobilisation of Zn by various tobacco genotypes. One-month-old tobacco plants were grown for 8 days on top of a thin layer of an arable soil that had been sampled near a Zn smelter. A range of rhizosphere pH values was obtained either by growing nitrate-fed tobacco on top of the soil amended with various amounts of acid or lime, or by growing tobacco on top of the unamended soil with nitrate or ammonium supply. In the latter case, we used three genotypes that were assumed to differ in their ability to accumulate Zn or acidify the rhizosphere and, hence, mobilise soil Zn. In spite of the moderate level of contamination of the soil, tobacco took up substantial amounts of soil Zn. No difference was found between the three genotypes. Exchangeable Zn steeply increased with decreasing soil pH, which could be adequately modelled with a simple model. Whatever the source of nitrogen supplied, a significant acidification occurred in the rhizosphere. This explains why the observed Zn mobilisation was larger than expected on the basis of bulk soil pH values. Taking account of the change of pH induced by tobacco roots is thus of prime importance for better predicting the actual amount of exchangeable Zn in the rhizosphere and, thereafter the bioavailability of soil Zn.

Collaboration


Dive into the Philippe Hinsinger's collaboration.

Top Co-Authors

Avatar

Benoît Jaillard

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Frédéric Gérard

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Claude Plassard

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Agnès Robin

Blaise Pascal University

View shared research outputs
Top Co-Authors

Avatar

Didier Arnal

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Gérard Souche

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge