Philippe Lamberton
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Philippe Lamberton.
Frontiers in Microbiology | 2016
Hélène Falentin; Lucie Rault; Aurélie Nicolas; Damien Bouchard; Jacques Lassalas; Philippe Lamberton; Jean-Marc Aubry; Pierre-Guy Marnet; Yves Le Loir; Sergine Even
Mastitis is a mammary gland inflammatory disease often due to bacterial infections. Like many other infections, it used to be considered as a host-pathogen interaction driven by host and bacterial determinants. Until now, the involvement of the bovine mammary gland microbiota in the host-pathogen interaction has been poorly investigated, and mainly during the infectious episode. In this study, the bovine teat microbiome was investigated in 31 quarters corresponding to 27 animals, which were all free of inflammation at sampling time but which had different histories regarding mastitis: from no episode of mastitis on all the previous lactations (Healthy quarter, Hq) to one or several clinical mastitis events (Mastitic quarter, Mq). Several quarters whose status was unclear (possible history of subclinical mastitis) were classified as NDq. Total bacterial DNA was extracted from foremilk samples and swab samples of the teat canal. Taxonomic profiles were determined by pyrosequencing on 16s amplicons of the V3-4 region. Hq quarters showed a higher diversity compared to Mq ones (Shannon index: ~8 and 6, respectively). Clustering of the quarters based on their bacterial composition made it possible to separate Mq and Hq quarters into two separate clusters (C1 and C2, respectively). Discriminant analysis of taxonomic profiles between these clusters revealed several differences and allowed the identification of taxonomic markers in relation to mastitis history. C2 quarters were associated with a higher proportion of the Clostridia class (including genera such as Ruminococcus, Oscillospira, Roseburia, Dorea, etc.), the Bacteroidetes phylum (Prevotella, Bacteroides, Paludibacter, etc.), and the Bifidobacteriales order (Bifidobacterium), whereas C1 quarters showed a higher proportion of the Bacilli class (Staphylococcus) and Chlamydiia class. These results indicate that microbiota is altered in udders which have already developed mastitis, even far from the infectious episode. Microbiome alteration may have resulted from the infection itself and or the associated antibiotic treatment. Alternatively, differences in microbiome composition in udders with a history of mastitis may have occurred prior to the infection and even contributed to infection development. Further investigations on the dynamics of mammary gland microbiota will help to elucidate the contribution of this endogenous microbiota to the mammary gland health.
Journal of Dairy Science | 2015
Vanessa Lollivier; P. Lacasse; J. Angulo Arizala; Philippe Lamberton; S. Wiart; J. Portanguen; Rupert Bruckmaier; Marion Boutinaud
It has been previously shown that the long-term inhibition of milking-induced prolactin (PRL) release by quinagolide (QN), a dopamine agonist, reduces milk yield in dairy cows. To further demonstrate that PRL is galactopoietic in cows, we performed a short-term experiment that used PRL injections to restore the release of PRL at milking in QN-treated cows. Nine Holstein cows were assigned to treatments during three 5-d periods in a 3×3 Latin square design: 1) QN: twice-daily i.m. injections of 1mg of QN; 2) QN-PRL: twice-daily i.m. injections of 1mg of QN and twice-daily (at milking time) i.v. injections of PRL (2µg/kg body weight); and 3) control: twice-daily injections of the vehicles. Mammary epithelial cells (MEC) were purified from milk so that their viability could be assessed, and mammary biopsies were harvested for immunohistological analyses of cell proliferation using PCNA and STAT5 staining. In both milk-purified MEC and mammary tissue, the mRNA levels of milk proteins and BAX were determined using real-time reverse-transcription PCR. Daily QN injections reduced milking-induced PRL release. The area under the PRL curve was similar in the control and PRL injection treatments, but the shape was different. The QN treatment decreased milk, lactose, protein, and casein production. Injections of PRL did not restore milk yield but tended to increase milk protein yield. In mammary tissue, the percentage of STAT5-positive cells was reduced during QN but not during QN-PRL in comparison with the control treatment. The percentage of PCNA-positive cells was greater during QN-PRL injections than during the control or QN treatment and tended to be lower during QN than during the control treatment. In milk-purified MEC, κ-casein and α-lactalbumin mRNA levels were lower during QN than during the control treatment, but during QN-PRL, they were not different from the control treatment. In mammary tissue, the BAX mRNA level was lower during QN-PRL than during QN. The number of MEC exfoliated into milk was increased by QN injections but tended to be decreased by PRL injections. Injections of PRL also increased the viability of MEC harvested from milk. Although PRL injections at milking could not reverse the effect of QN treatment on milk production, their effects on cell survival and exfoliation and on gene expression suggest that the effect of QN treatment on the mammary gland is due to QNs inhibition of PRL secretion.
Journal of Dairy Science | 2015
M.N. Haque; Jocelyne Guinard-Flament; Philippe Lamberton; C. Mustière; S. Lemosquet
The aim of this study was to compare the modifications in mammary gland metabolism by supplying an ideal versus an imbalanced essential AA (EAA) profile at low and high metabolizable protein (or PDIE, its equivalent in the INRA feeding system). Four lactating, multiparous Holstein cows received 4 treatments composed of 2 basal diets containing 2 levels of PDIE (LP or HP) and 2 different infusions of AA mixtures (AA- or AA+) in the duodenum. The AA+ mixture contained Lys, Met, Leu, His, Ile, Val, Phe, Arg, Trp, and Glu, whereas the AA- mixture contained Glu, Pro, and Ser. The infusion mixtures were iso-PDIE. The diet plus infusions provided 13.9 versus 15.8% of crude protein that corresponded to 102 versus 118g/kg of dry matter of PDIE in LP and HP treatments, respectively. The treatments were designed as a 2×2 crossover design of 2 levels of PDIE supply (LP vs. HP) with 28-d periods. Infusions of AA in the duodenum (AA- vs. AA+) were superimposed to diet within each 28-d period according to 2×2 crossover designs with 14-d subperiods. Increasing the PDIE supply tended to increase milk protein yield; however, the efficiency of PDIE utilization decreased and the plasma urea concentration increased, indicating a higher catabolism of AA. The AA+ treatments increased milk protein yield and content similarly at both levels of protein supply. This was explained by an increase in the mammary uptake of all EAA except His and Trp. The mammary uptake of non-EAA (NEAA) was altered to the increase in EAA uptake so that the total AA uptake was almost equal to milk protein output on a nitrogen basis. The ratio between NEAA to total AA uptake decreased from 46% in LPAA- to 40% in LPAA+, HPAA-, and HPAA+ treatments. The PDIE efficiency tended to increase in the AA+ versus the AA- treatments because the NEAA supply and the amount of NEAA not used by the mammary both decreased. Nevertheless, our AA+ treatments seemed not to be the ideal profile: the mammary uptake-to-output ratio for Thr was higher than 1 in LPAA-, but it decreased to 1 in all the other treatments, suggesting that Thr was deficient in these treatments. Conversely, an excess of His was indicated because its uptake was similar in AA+ and AA- treatments. In conclusion, balancing the EAA profile increased milk protein yield and metabolizable protein efficiency at both levels of protein supply by increasing the mammary uptake of EAA and altering the NEAA uptake, leading to less AA available for catabolism.
Journal of Dairy Science | 2011
Jocelyne Guinard-Flament; S. Lemosquet; E. Delamaire; G. Le Bris; Philippe Lamberton; Catherine Hurtaud
Little is known about modifications of the mammary utilization of nutrients circulating in blood plasma when milk yield is strongly decreased by once-daily milking. A trial was carried out to describe the mammary nutritional adjustments linked to the downregulation of milk synthesis as milk accumulated over an extended milking interval in the bovine udder. Three Holstein dairy cows yielding 34.0 kg/d of milk were fitted with an ultrasound flow probe around the left external pudic artery and with catheters inserted into the left carotid and milk vein to estimate mammary blood flow (MBF) and mammary uptake of acetate, β-hydroxybutyrate, nonesterified fatty acids, glycerol, glucose, O(2), and CO(2) release. The trial was carried out over 2 consecutive weeks, with wk 2 repeating wk 1. Cows were milked twice daily at 12-h milking intervals. On d 3, cows were milked at 0630 h and were not milked for 36 h until d 4 at 1830 h. Over the following days, twice-daily milking was resumed using 12-h milking intervals. Each half-udder was milked separately. Secretion rates of milk and milk proteins decreased 67% during the 12-to-36-h interval of milk accumulation, whereas that of milk fat fell 30%. Timing of changes in MBF and lactose levels in blood plasma was concomitant and significant after 19.5 and 21.5h of milk accumulation in the udder, respectively. The MBF decreased, most likely because the usual increases in MBF no longer occurred when the udder was full of milk. After 24h of milk accumulation, MBF did not increase further when cows lay down, and did not increase as usual 3h after a meal, suggesting a possible physical effect of milk accumulated in the udder on MBF, complementing metabolic regulation. Mammary uptake or release of nutrients was lowered before 24h for glucose, acetate, and β-hydroxybutyrate and after 24h for total glycerol, O(2), and CO(2), mostly associated with the impaired MBF. However, these decreases ranged from 12 to 17%, and cannot entirely explain the -45 and -20% decreases in milk secretion rates observed during the entire 36 h of milk accumulation, thus confirming the primary role of intramammary metabolic regulation in the downregulation of milk secretion. The larger amount of nutrients taken up by the udder could explain the enhanced milk fat levels, involving a strongly modified metabolic fate of nutrients.
Journal of Dairy Science | 2016
A. Boudon; M. Johan; Agnès Narcy; Marion Boutinaud; Philippe Lamberton; Catherine Hurtaud
Milk and dairy products are an important source of Ca for humans. Recent studies have shown fluctuations in cow milk Ca content during the year in France, with high values in winter and with corn silage diets, and a decrease during May and June and with grass diets. The aim of this study was to identify the reasons for this seasonal decrease in milk Ca content by testing the effect of 2 levels of dietary cation-anion differences (DCAD; 0 mEq/kg of dry matter for DCAD 0 and 400 mEq/kg for DCAD 400) and 2 day lengths (8 h of light/d for short days: SD; and 16 h/d for long days: LD) on the Ca balances of dairy cows. The DCAD treatments were designed to mimic diets based either on corn silage or on herbage. The cows were only illuminated by solarium lights providing UVA and UVB. The trial was conducted according to 2 simultaneous replicates of a 4×4 Latin square design using 8 dairy cows averaging 103±44 d in milk with 4 periods of 14 d. Data were analyzed by ANOVA with a model including treatment, cow, and period effects. No significant interaction was found between day length and DCAD treatments. With DCAD 400 compared with DCAD 0, blood pH increased and plasma ionized Ca content decreased, whereas the plasma total Ca content did not differ between treatments. Milk Ca content, however, increased with DCAD 400 compared with DCAD 0, in relation to a decrease in the amount of Ca excreted in urine. The DCAD had no significant effect on protein and casein contents and DCAD 400 tended to decrease milk yield. This illustrates that the udder did not decrease Ca uptake from the blood at high DCAD even though DCAD 400 decreased the mammary availability of Ca by decreasing the proportion of blood ionized Ca. Milk Ca and casein contents were significantly lower with LD compared with SD, whereas day length had no effect on milk yield after 14 d of treatment. Bone accretion of cows increased when the Ca content of milk increased (i.e., with DCAD 400 compared with DCAD 0 and with SD compared with LD). This work suggests that long and sunny days could explain part of the seasonal decrease in milk Ca content in summer and refutes the hypothesis that low milk Ca contents at grazing could be due to the high DCAD of herbage.
Journal of Dairy Science | 2016
Marion Boutinaud; N. Isaka; Vanessa Lollivier; Frederic Dessauge; Eva Gandemer; Philippe Lamberton; A.I. De Prado Taranilla; A. Deflandre; Lorraine M. Sordillo
Dairy cattle require a dry period between successive lactations to ensure optimal milk production. Because prolactin (PRL) is necessary for the initiation and maintenance of milk production, strategies that can inhibit PRL secretion might hasten the involution process. The objective of this study was to determine the effect of the PRL release inhibitor cabergoline on markers of mammary gland involution during the early dry period. To assess the effect of cabergoline treatment on mammary gland involution, 14 Holstein dairy cows in late lactation were treated with either a single i.m. administration of 5.6mg of cabergoline (Velactis, Ceva Santé Animale, Libourne, France, n=7) or placebo (n=7) at the time of dry-off. Blood samples and mammary secretion samples were collected 6d before dry-off and again 1, 2, 3, 4, 8, and 14d following the abrupt cessation of lactation. Blood samples were used to determine plasma PRL concentrations. Mammary secretion samples were used to determine somatic cell count, milk fat, lactose, true protein content, and concentrations of α-lactalbumin, lactoferrin, and citrate. Following the cessation of lactation, changes in mammary secretion composition indicated diminished milk synthesis, including reduced concentrations of α-lactalbumin, citrate, and lactose. In contrast, milk somatic cell count, percent total protein, percent fat content, and lactoferrin concentrations significantly increased as involution progressed. Cabergoline treatment decreased the plasma PRL concentrations during the first week of dry-off, compared with the control treatment. No significant differences in citrate, α-lactalbumin, or protein content were observed between treatment groups. The most dramatic changes in secretion composition as a consequence of cabergoline treatment occurred during the first week of the dry period, when lactose concentrations and the citrate:lactoferrin molar ratio were lower and lactoferrin concentrations higher than in the control cows. Cabergoline treatment also tended to increase fat content and somatic cell count more rapidly following dry-off compared with the control group. These changes in mammary secretion composition following the abrupt cessation of lactation indicate that cabergoline treatment facilitated dry-off and effectively accelerated mammary gland involution.
Journal of Dairy Science | 2017
Marion Boutinaud; N. Isaka; Eva Gandemer; Philippe Lamberton; S. Wiart; A.I. De Prado Taranilla; Lorraine M. Sordillo; Vanessa Lollivier
The inhibition of prolactin release using cabergoline, a dopamine agonist, is an effective strategy to accelerate the changes in mammary secretion composition after drying-off. The objective of this study was to determine how cabergoline may affect mammary tissue remodeling during early involution. Holstein dairy cows were treated with either a single i.m. administration of 5.6 mg of cabergoline (Velactis, Ceva Santé Animale, Libourne, France, n = 7) or placebo (n = 7) at the time of drying-off. Mammary biopsy samples were collected 1 wk before drying-off (d -6), after 30 h of milk accumulation (d 1), and again 8 d following drying-off (d 8) to determine changes in gene expression, lactoferrin content, and cell turnover. Blood and mammary secretion samples were collected at d -6 and again at d 1, 2, 3, 4, 8, and 14 following the abrupt cessation of lactation to evaluate indicators of blood-milk barrier integrity and other markers of mammary tissue remodeling. Cabergoline induced less SLC2A1, BAX, CAPN2, and IGFBP5 mRNA expression. In contrast, cabergoline did not modify changes in cell proliferation and apoptosis. Following the cessation of lactation, changes in mammary secretion composition (Na+ and K+) and blood lactose concentrations were indicative of a loss in the blood-milk barrier function in both treatment groups. Cabergoline treatment affected only Na+ and K+ concentrations at d 1, suggesting a moderate increase in tight junction permeability. The increase in the activity of MMP9 and in mammary epithelial cell concentration in mammary secretions was greater in cabergoline-treated cows than in control cows, suggesting more mammary tissue remodeling. The increase in lactoferrin immunostaining in the mammary tissue occurred earlier for cabergoline-treated cows than for control cows, and was essentially localized in the stroma. Changes in some key markers of mammary involution suggest that cabergoline accelerates mammary gland remodeling. Thus, a single injection of cabergoline after the last milking would facilitate drying-off by enhancing mammary gland involution.
Applied Animal Behaviour Science | 2015
Remy Delagarde; Philippe Lamberton
Journal of Animal Science | 2014
Marion Boutinaud; Anne Boudon; Agnès Narcy; Catherine Hurtaud; Muriel Johan; Jérémie Couedon; Philippe Lamberton
67. Annual Meeting of the European Federation of Animal Science (EAAP) | 2016
Lucile Hervé; H. Quesnel; Sandra Wiart-Letort; Philippe Lamberton; Colette Mustiere; Vanessa Lollivier; Marion Boutinaud