Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philippe Le Mercier is active.

Publication


Featured researches published by Philippe Le Mercier.


Nucleic Acids Research | 2007

euHCVdb: the European hepatitis C virus database

Christophe Combet; Nicolas Garnier; Céline Charavay; Delphine Grando; Daniel Crisan; Julien Lopez; Alexandre Dehne-Garcia; Christophe Geourjon; Emmanuel Bettler; Chantal Hulo; Philippe Le Mercier; Ralf Bartenschlager; Helmut M. Diepolder; Darius Moradpour; Jean-Michel Pawlotsky; Charles M. Rice; Christian Trepo; François Penin; Gilbert Deléage

The hepatitis C virus (HCV) genome shows remarkable sequence variability, leading to the classification of at least six major genotypes, numerous subtypes and a myriad of quasispecies within a given host. A database allowing researchers to investigate the genetic and structural variability of all available HCV sequences is an essential tool for studies on the molecular virology and pathogenesis of hepatitis C as well as drug design and vaccine development. We describe here the European Hepatitis C Virus Database (euHCVdb, ), a collection of computer-annotated sequences based on reference genomes. The annotations include genome mapping of sequences, use of recommended nomenclature, subtyping as well as three-dimensional (3D) molecular models of proteins. A WWW interface has been developed to facilitate database searches and the export of data for sequence and structure analyses. As part of an international collaborative effort with the US and Japanese databases, the European HCV Database (euHCVdb) is mainly dedicated to HCV protein sequences, 3D structures and functional analyses.


Nucleic Acids Research | 2011

ViralZone: a knowledge resource to understand virus diversity

Chantal Hulo; Eduardo De Castro; Patrick Masson; Lydie Bougueleret; Amos Marc Bairoch; Ioannis Xenarios; Philippe Le Mercier

The molecular diversity of viruses complicates the interpretation of viral genomic and proteomic data. To make sense of viral gene functions, investigators must be familiar with the virus host range, replication cycle and virion structure. Our aim is to provide a comprehensive resource bridging together textbook knowledge with genomic and proteomic sequences. ViralZone web resource (www.expasy.org/viralzone/) provides fact sheets on all known virus families/genera with easy access to sequence data. A selection of reference strains (RefStrain) provides annotated standards to circumvent the exponential increase of virus sequences. Moreover ViralZone offers a complete set of detailed and accurate virion pictures.


Journal of Virology | 2002

A Novel Expression Cassette of Lyssavirus Shows that the Distantly Related Mokola Virus Can Rescue a Defective Rabies Virus Genome

Philippe Le Mercier; Yves Jacob; Kyle Tanner; Noël Tordo

ABSTRACT By comparing three expression vectors for the rabies virus (Rv) minigenome, we show that the characteristic of the Rv RNA is important for efficient rescue despite its not being crucial for replication. Moreover, we show that the coexpression of the viral proteins from helper Rv and Mokola virus could rescue the Rv minigenome while Rv-related European bat lyssavirus 1 could not, suggesting that the signals controlling transcription and replication are conserved in the distantly related Rv and Mokola virus.


Journal of Virology | 2002

Ambisense Sendai Viruses Are Inherently Unstable but Are Useful To Study Viral RNA Synthesis

Philippe Le Mercier; Dominique Garcin; Stéphane Hausmann; Daniel Kolakofsky

ABSTRACT Ambisense Sendai virus (SeV) was prepared in order to study the control of viral RNA synthesis. In these studies, we found that the relative ratios of genomes/antigenomes formed during infection are largely determined by the relative strengths of the replication promoters, independent of the presence of a functional mRNA start site. We also found that the ability of the viral polymerase (vRdRP) to respond to an mRNA editing site requires prior (re)initiation at an mRNA start site, similar to the acquisition of vRdRP processivity in the absence of nascent chain coassembly. During these studies, the inherent instability of ambisense SeV upon passage in embryonated chicken eggs was noted and was found to be associated with a point mutation in the ambisense mRNA (ambi-mRNA) start site that severely limited its expression. Since the interferon (IFN)-induced antiviral state is mediated in part via double-stranded RNA (dsRNA), the efficiency of the ambi-mRNA poly(A)/stop site was examined. This site was found to operate in a manner similar to that of other SeV mRNA poly(A)/stop sites, i.e., at ∼95% efficiency. This modest level of vRdRP read-through is apparently tolerable for natural SeV because the potential to form dsRNA during infection remains limited. However, when mRNAs are expressed from ambisense SeV antigenomes, vRdRP read-through of the ambi-mRNA poly(A)/stop site creates a capped transcript that can potentially extend the entire length of the antigenome, since there are no further poly(A)/stop sites here. In support of this hypothesis, loss of ambi-mRNA expression during passage of ambisense SeV stocks in eggs is also characterized by conversion of virus that grows poorly in IFN-sensitive cultures and is relatively IFN sensitive to virus that grows well even in IFN-pretreated cells that restrict vesicular stomatitis virus replication, i.e., the wild-type SeV phenotype. The selection of mutants unable to express ambi-mRNA on passage in chicken eggs is presumably due to increased levels of dsRNA during infection. How natural ambisense viruses may deal with this dilemma is discussed.


Journal of Virology | 2003

Sendai Virus Targets Inflammatory Responses, as Well as the Interferon-Induced Antiviral State, in a Multifaceted Manner

Laura Eve Strahle; Dominique Garcin; Philippe Le Mercier; Joerg F. Schlaak; Daniel Kolakofsky

ABSTRACT We have used cDNA arrays to compare the activation of various cellular genes in response to infection with Sendai viruses (SeV) that contain specific mutations. Three groups of cellular genes activated by mutant SeV infection, but not by wild-type SeV, were identified in this way. While some of these genes are well known interferon (IFN)-stimulated genes, others, such as those for interleukin-6 (IL-6) and IL-8, are not directly induced by IFN. The gene for beta IFN (IFN-β), which is critical for initiating an antiviral response, was also specifically activated in mutant SeV infections. The SeV-induced activation of IFN-β was found to depend on IFN regulatory factor 3, and the activation of all three cellular genes was independent of IFN signaling. Mutations that disrupt four distinct elements in the SeV genome (the leader RNA, two regions of the C protein, and the V protein) all lead to enhanced levels of IFN-β mRNA, and at least three of these viral genes also appear to be involved in preventing activation of IL-8. Our results suggest that SeV targets the inflammatory and adaptive immune responses as well as the IFN-induced intracellular antiviral state by using a multifaceted approach.


Database | 2010

OpenFluDB, a database for human and animal influenza virus

Robin Liechti; Anne Gleizes; Dmitry Kuznetsov; Lydie Bougueleret; Philippe Le Mercier; Amos Marc Bairoch; Ioannis Xenarios

Although research on influenza lasted for more than 100 years, it is still one of the most prominent diseases causing half a million human deaths every year. With the recent observation of new highly pathogenic H5N1 and H7N7 strains, and the appearance of the influenza pandemic caused by the H1N1 swine-like lineage, a collaborative effort to share observations on the evolution of this virus in both animals and humans has been established. The OpenFlu database (OpenFluDB) is a part of this collaborative effort. It contains genomic and protein sequences, as well as epidemiological data from more than 27 000 isolates. The isolate annotations include virus type, host, geographical location and experimentally tested antiviral resistance. Putative enhanced pathogenicity as well as human adaptation propensity are computed from protein sequences. Each virus isolate can be associated with the laboratories that collected, sequenced and submitted it. Several analysis tools including multiple sequence alignment, phylogenetic analysis and sequence similarity maps enable rapid and efficient mining. The contents of OpenFluDB are supplied by direct user submission, as well as by a daily automatic procedure importing data from public repositories. Additionally, a simple mechanism facilitates the export of OpenFluDB records to GenBank. This resource has been successfully used to rapidly and widely distribute the sequences collected during the recent human swine flu outbreak and also as an exchange platform during the vaccine selection procedure. Database URL: http://openflu.vital-it.ch.


Nucleic Acids Research | 2012

ViralZone: recent updates to the virus knowledge resource

Patrick Masson; Chantal Hulo; Edouard de Castro; Hans Bitter; Lore Gruenbaum; Laurent Essioux; Lydie Bougueleret; Ioannis Xenarios; Philippe Le Mercier

ViralZone (http://viralzone.expasy.org) is a knowledge repository that allows users to learn about viruses including their virion structure, replication cycle and host–virus interactions. The information is divided into viral fact sheets that describe virion shape, molecular biology and epidemiology for each viral genus, with links to the corresponding annotated proteomes of UniProtKB. Each viral genus page contains detailed illustrations, text and PubMed references. This new update provides a linked view of viral molecular biology through 133 new viral ontology pages that describe common steps of viral replication cycles shared by several viral genera. This viral cell-cycle ontology is also represented in UniProtKB in the form of annotated keywords. In this way, users can navigate from the description of a replication-cycle event, to the viral genus concerned, and the associated UniProtKB protein records.


Journal of Virology | 2003

Competition between the Sendai Virus N mRNA Start Site and the Genome 3′-End Promoter for Viral RNA Polymerase

Philippe Le Mercier; Dominique Garcin; Eduardo Garcia; Daniel Kolakofsky

ABSTRACT The genomic and antigenomic 3′-end replication promoters of Sendai virus are bipartite in nature and symmetrical, composed of le or tr sequences; a gene start or gene end site, respectively; and a simple hexameric repeat. The relative strengths of these 3′-end promoters determines the ratios of genomes and antigenomes formed during infection and whether model mini-genomes can be rescued from DNA by nondefective helper viruses. Using these tests of promoter strength, we have confirmed that tr is stronger than le in this respect. We have also found that the presence of a gene start site within either 3′-end promoter strongly reduces 3′-end promoter strength. The negative effects of the gene start site on the 3′-end promoter suggest that these closely spaced RNA start sites compete with each other for a common pool of viral RNA polymerase. The manner in which this competition could occur for polymerase off the template (in trans) and polymerase on the template (in cis) adds insight into how the viral RNA polymerase switches between its dual functions as transcriptase and replicase.


Journal of Virology | 2011

Human Parainfluenza Virus Type 2 L Protein Regions Required for Interaction with Other Viral Proteins and mRNA Capping

Machiko Nishio; Masato Tsurudome; Dominique Garcin; Hiroshi Komada; Morihiro Ito; Philippe Le Mercier; Tetsuya Nosaka; Daniel Kolakofsky

ABSTRACT The large RNA polymerase (L) protein of human parainfluenza virus type 2 (hPIV2) binds the nucleocapsid, phosphoprotein, and V protein, as well as itself, and these interactions are essential for transcription and replication of the viral RNA genome. Although all of these interactions were found to be mediated through the domains within the N terminus of L, the C terminus of the L protein was also required for minigenome reporter gene expression. We have identified a highly conserved rubulavirus domain near the C terminus of the L protein that is required for mRNA synthesis but not for genome replication. Remarkably, this region of L shares homology with a conserved region of cellular capping enzymes that binds GTP and forms a lysyl-GMP enzyme intermediate, the first step in the cellular capping reaction. We propose that this conserved region of L also binds GTP (or GDP) to carry out the second step of the unconventional nonsegmented negative-strand virus capping reaction.


Database | 2014

The EMPRES-i genetic module: a novel tool linking epidemiological outbreak information and genetic characteristics of influenza viruses

Filip Claes; Dmitry Kuznetsov; Robin Liechti; Sophie Von Dobschuetz; Bao Dinh Truong; Anne Gleizes; Daniele Conversa; Alessandro Colonna; Ettore Demaio; Sabina Ramazzotto; Fairouz Larfaoui; Julio Pinto; Philippe Le Mercier; Ioannis Xenarios; Gwenaelle Dauphin

Combining epidemiological information, genetic characterization and geomapping in the analysis of influenza can contribute to a better understanding and description of influenza epidemiology and ecology, including possible virus reassortment events. Furthermore, integration of information such as agroecological farming system characteristics can provide new knowledge on risk factors of influenza emergence and spread. Integrating viral characteristics into an animal disease information system is therefore expected to provide a unique tool to trace-and-track particular virus strains; generate clade distributions and spatiotemporal clusters; screen for distribution of viruses with specific molecular markers; identify potential risk factors; and analyze or map viral characteristics related to vaccines used for control and/or prevention. For this purpose, a genetic module was developed within EMPRES-i (FAO’s global animal disease information system) linking epidemiological information from influenza events with virus characteristics and enabling combined analysis. An algorithm was developed to act as the interface between EMPRES-i disease event data and publicly available influenza virus sequences in OpenfluDB. This algorithm automatically computes potential links between outbreak event and sequences, which are subsequently manually validated by experts. Subsequently, other virus characteristics such as antiviral resistance can then be associated to outbreak data. To visualize such characteristics on a geographic map, shape files with virus characteristics to overlay on other EMPRES-i map layers (e.g. animal densities) can be generated. The genetic module allows export of associated epidemiological and sequence data for further analysis. FAO has made this tool available for scientists and policy makers. Contributions are expected from users to improve and validate the number of linked influenza events and isolate information as well as the quality of information. Possibilities to interconnect with other influenza sequence databases or to expand the genetic module to other viral diseases (e.g. foot and mouth disease) are being explored. Database OpenfluDB URL: http://openflu.vital-it.ch Database EMPRES-i URL: http://EMPRES-i.fao.org/

Collaboration


Dive into the Philippe Le Mercier's collaboration.

Top Co-Authors

Avatar

Ioannis Xenarios

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Chantal Hulo

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Patrick Masson

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lydie Bougueleret

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Edouard de Castro

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Amos Marc Bairoch

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sylvain Poux

Swiss Institute of Bioinformatics

View shared research outputs
Researchain Logo
Decentralizing Knowledge