Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chantal Hulo is active.

Publication


Featured researches published by Chantal Hulo.


Nucleic Acids Research | 2012

The UniProt-GO Annotation database in 2011

Emily Dimmer; Rachael P. Huntley; Yasmin Alam-Faruque; Tony Sawford; Claire O'Donovan; María Martín; Benoit Bely; Paul Browne; Wei Mun Chan; Ruth Eberhardt; Michael Gardner; Kati Laiho; D Legge; Michele Magrane; Klemens Pichler; Diego Poggioli; Harminder Sehra; Andrea H. Auchincloss; Kristian B. Axelsen; Marie-Claude Blatter; Emmanuel Boutet; Silvia Braconi-Quintaje; Lionel Breuza; Alan Bridge; Elizabeth Coudert; Anne Estreicher; L Famiglietti; Serenella Ferro-Rojas; Marc Feuermann; Arnaud Gos

The GO annotation dataset provided by the UniProt Consortium (GOA: http://www.ebi.ac.uk/GOA) is a comprehensive set of evidenced-based associations between terms from the Gene Ontology resource and UniProtKB proteins. Currently supplying over 100 million annotations to 11 million proteins in more than 360 000 taxa, this resource has increased 2-fold over the last 2 years and has benefited from a wealth of checks to improve annotation correctness and consistency as well as now supplying a greater information content enabled by GO Consortium annotation format developments. Detailed, manual GO annotations obtained from the curation of peer-reviewed papers are directly contributed by all UniProt curators and supplemented with manual and electronic annotations from 36 model organism and domain-focused scientific resources. The inclusion of high-quality, automatic annotation predictions ensures the UniProt GO annotation dataset supplies functional information to a wide range of proteins, including those from poorly characterized, non-model organism species. UniProt GO annotations are freely available in a range of formats accessible by both file downloads and web-based views. In addition, the introduction of a new, normalized file format in 2010 has made for easier handling of the complete UniProt-GOA data set.


Nucleic Acids Research | 2007

euHCVdb: the European hepatitis C virus database

Christophe Combet; Nicolas Garnier; Céline Charavay; Delphine Grando; Daniel Crisan; Julien Lopez; Alexandre Dehne-Garcia; Christophe Geourjon; Emmanuel Bettler; Chantal Hulo; Philippe Le Mercier; Ralf Bartenschlager; Helmut M. Diepolder; Darius Moradpour; Jean-Michel Pawlotsky; Charles M. Rice; Christian Trepo; François Penin; Gilbert Deléage

The hepatitis C virus (HCV) genome shows remarkable sequence variability, leading to the classification of at least six major genotypes, numerous subtypes and a myriad of quasispecies within a given host. A database allowing researchers to investigate the genetic and structural variability of all available HCV sequences is an essential tool for studies on the molecular virology and pathogenesis of hepatitis C as well as drug design and vaccine development. We describe here the European Hepatitis C Virus Database (euHCVdb, ), a collection of computer-annotated sequences based on reference genomes. The annotations include genome mapping of sequences, use of recommended nomenclature, subtyping as well as three-dimensional (3D) molecular models of proteins. A WWW interface has been developed to facilitate database searches and the export of data for sequence and structure analyses. As part of an international collaborative effort with the US and Japanese databases, the European HCV Database (euHCVdb) is mainly dedicated to HCV protein sequences, 3D structures and functional analyses.


Nucleic Acids Research | 2011

ViralZone: a knowledge resource to understand virus diversity

Chantal Hulo; Eduardo De Castro; Patrick Masson; Lydie Bougueleret; Amos Marc Bairoch; Ioannis Xenarios; Philippe Le Mercier

The molecular diversity of viruses complicates the interpretation of viral genomic and proteomic data. To make sense of viral gene functions, investigators must be familiar with the virus host range, replication cycle and virion structure. Our aim is to provide a comprehensive resource bridging together textbook knowledge with genomic and proteomic sequences. ViralZone web resource (www.expasy.org/viralzone/) provides fact sheets on all known virus families/genera with easy access to sequence data. A selection of reference strains (RefStrain) provides annotated standards to circumvent the exponential increase of virus sequences. Moreover ViralZone offers a complete set of detailed and accurate virion pictures.


Nucleic Acids Research | 2012

ViralZone: recent updates to the virus knowledge resource

Patrick Masson; Chantal Hulo; Edouard de Castro; Hans Bitter; Lore Gruenbaum; Laurent Essioux; Lydie Bougueleret; Ioannis Xenarios; Philippe Le Mercier

ViralZone (http://viralzone.expasy.org) is a knowledge repository that allows users to learn about viruses including their virion structure, replication cycle and host–virus interactions. The information is divided into viral fact sheets that describe virion shape, molecular biology and epidemiology for each viral genus, with links to the corresponding annotated proteomes of UniProtKB. Each viral genus page contains detailed illustrations, text and PubMed references. This new update provides a linked view of viral molecular biology through 133 new viral ontology pages that describe common steps of viral replication cycles shared by several viral genera. This viral cell-cycle ontology is also represented in UniProtKB in the form of annotated keywords. In this way, users can navigate from the description of a replication-cycle event, to the viral genus concerned, and the associated UniProtKB protein records.


PLOS ONE | 2014

An Integrated Ontology Resource to Explore and Study Host-Virus Relationships

Patrick Masson; Chantal Hulo; Edouard de Castro; Rebecca E. Foulger; Sylvain Poux; Alan Bridge; Jane Lomax; Lydie Bougueleret; Ioannis Xenarios; Philippe Le Mercier

Our growing knowledge of viruses reveals how these pathogens manage to evade innate host defenses. A global scheme emerges in which many viruses usurp key cellular defense mechanisms and often inhibit the same components of antiviral signaling. To accurately describe these processes, we have generated a comprehensive dictionary for eukaryotic host-virus interactions. This controlled vocabulary has been detailed in 57 ViralZone resource web pages which contain a global description of all molecular processes. In order to annotate viral gene products with this vocabulary, an ontology has been built in a hierarchy of UniProt Knowledgebase (UniProtKB) keyword terms and corresponding Gene Ontology (GO) terms have been developed in parallel. The results are 65 UniProtKB keywords related to 57 GO terms, which have been used in 14,390 manual annotations; 908,723 automatic annotations and propagated to an estimation of 922,941 GO annotations. ViralZone pages, UniProtKB keywords and GO terms provide complementary tools to users, and the three resources have been linked to each other through host-virus vocabulary.


Database | 2009

Collaborative annotation of genes and proteins between UniProtKB/Swiss-Prot and dictyBase

Pascale Gaudet; Lydie Lane; Petra Fey; Alan Bridge; Sylvain Poux; Andrea H. Auchincloss; Kristian B. Axelsen; S. Braconi Quintaje; Emmanuel Boutet; P. Brown; Elisabeth Coudert; Ruchira S. Datta; W.C. de Lima; T. de Oliveira Lima; Séverine Duvaud; N. Farriol-Mathis; S. Ferro Rojas; Marc Feuermann; Alain Gateau; Ursula Hinz; Chantal Hulo; J. James; S. Jimenez; Florence Jungo; Guillaume Keller; P Lemercier; Damien Lieberherr; M. Moinat; A. Nikolskaya; I. Pedruzzi

UniProtKB/Swiss-Prot, a curated protein database, and dictyBase, the Model Organism Database for Dictyostelium discoideum, have established a collaboration to improve data sharing. One of the major steps in this effort was the ‘Dicty annotation marathon’, a week-long exercise with 30 annotators aimed at achieving a major increase in the number of D. discoideum proteins represented in UniProtKB/Swiss-Prot. The marathon led to the annotation of over 1000 D. discoideum proteins in UniProtKB/Swiss-Prot. Concomitantly, there were a large number of updates in dictyBase concerning gene symbols, protein names and gene models. This exercise demonstrates how UniProtKB/Swiss-Prot can work in very close cooperation with model organism databases and how the annotation of proteins can be accelerated through those collaborations.


BMC Microbiology | 2015

Representing virus-host interactions and other multi-organism processes in the Gene Ontology

Rebecca E. Foulger; David Osumi-Sutherland; B. K. McIntosh; Chantal Hulo; Patrick Masson; Sylvain Poux; P. Le Mercier; Jane Lomax

BackgroundThe Gene Ontology project is a collaborative effort to provide descriptions of gene products in a consistent and computable language, and in a species-independent manner. The Gene Ontology is designed to be applicable to all organisms but up to now has been largely under-utilized for prokaryotes and viruses, in part because of a lack of appropriate ontology terms.MethodsTo address this issue, we have developed a set of Gene Ontology classes that are applicable to microbes and their hosts, improving both coverage and quality in this area of the Gene Ontology. Describing microbial and viral gene products brings with it the additional challenge of capturing both the host and the microbe. Recognising this, we have worked closely with annotation groups to test and optimize the GO classes, and we describe here a set of annotation guidelines that allow the controlled description of two interacting organisms.ConclusionsBuilding on the microbial resources already in existence such as ViralZone, UniProtKB keywords and MeGO, this project provides an integrated ontology to describe interactions between microbial species and their hosts, with mappings to the external resources above. Housing this information within the freely-accessible Gene Ontology project allows the classes and annotation structure to be utilized by a large community of biologists and users.


Database | 2016

Improving HIV proteome annotation: new features of BioAfrica HIV Proteomics Resource

Megan Druce; Chantal Hulo; Patrick Masson; Paula Sommer; Ioannis Xenarios; Philippe Le Mercier; Tulio de Oliveira

The Human Immunodeficiency Virus (HIV) is one of the pathogens that cause the greatest global concern, with approximately 35 million people currently infected with HIV. Extensive HIV research has been performed, generating a large amount of HIV and host genomic data. However, no effective vaccine that protects the host from HIV infection is available and HIV is still spreading at an alarming rate, despite effective antiretroviral (ARV) treatment. In order to develop effective therapies, we need to expand our knowledge of the interaction between HIV and host proteins. In contrast to virus proteins, which often rapidly evolve drug resistance mutations, the host proteins are essentially invariant within all humans. Thus, if we can identify the host proteins needed for virus replication, such as those involved in transporting viral proteins to the cell surface, we have a chance of interrupting viral replication. There is no proteome resource that summarizes this interaction, making research on this subject a difficult enterprise. In order to fill this gap in knowledge, we curated a resource presents detailed annotation on the interaction between the HIV proteome and host proteins. Our resource was produced in collaboration with ViralZone and used manual curation techniques developed by UniProtKB/Swiss-Prot. Our new website also used previous annotations of the BioAfrica HIV-1 Proteome Resource, which has been accessed by approximately 10 000 unique users a year since its inception in 2005. The novel features include a dedicated new page for each HIV protein, a graphic display of its function and a section on its interaction with host proteins. Our new webpages also add information on the genomic location of each HIV protein and the position of ARV drug resistance mutations. Our improved BioAfrica HIV-1 Proteome Resource fills a gap in the current knowledge of biocuration. Database URL: http://www.bioafrica.net/proteomics/HIVproteome.html


Viruses | 2017

Bacterial Virus Ontology; Coordinating across Databases

Chantal Hulo; Patrick Masson; Ariane Toussaint; David Osumi-Sutherland; Edouard de Castro; Andrea H. Auchincloss; Sylvain Poux; Lydie Bougueleret; Ioannis Xenarios; Philippe Le Mercier

Bacterial viruses, also called bacteriophages, display a great genetic diversity and utilize unique processes for infecting and reproducing within a host cell. All these processes were investigated and indexed in the ViralZone knowledge base. To facilitate standardizing data, a simple ontology of viral life-cycle terms was developed to provide a common vocabulary for annotating data sets. New terminology was developed to address unique viral replication cycle processes, and existing terminology was modified and adapted. Classically, the viral life-cycle is described by schematic pictures. Using this ontology, it can be represented by a combination of successive events: entry, latency, transcription/replication, host–virus interactions and virus release. Each of these parts is broken down into discrete steps. For example enterobacteria phage lambda entry is broken down in: viral attachment to host adhesion receptor, viral attachment to host entry receptor, viral genome ejection and viral genome circularization. To demonstrate the utility of a standard ontology for virus biology, this work was completed by annotating virus data in the ViralZone, UniProtKB and Gene Ontology databases.


PLOS ONE | 2017

The ins and outs of eukaryotic viruses: Knowledge base and ontology of a viral infection

Chantal Hulo; Patrick Masson; Edouard de Castro; Andrea H. Auchincloss; Rebecca E. Foulger; Sylvain Poux; Jane Lomax; Lydie Bougueleret; Ioannis Xenarios; Philippe Le Mercier

Viruses are genetically diverse, infect a wide range of tissues and host cells and follow unique processes for replicating themselves. All these processes were investigated and indexed in ViralZone knowledge base. To facilitate standardizing data, a simple ontology of viral life-cycle terms was developed to provide a common vocabulary for annotating data sets. New terminology was developed to address unique viral replication cycle processes, and existing terminology was modified and adapted. The virus life-cycle is classically described by schematic pictures. Using this ontology, it can be represented by a combination of successive terms: “entry”, “latency”, “transcription”, “replication” and “exit”. Each of these parts is broken down into discrete steps. For example Zika virus “entry” is broken down in successive steps: “Attachment”, “Apoptotic mimicry”, “Viral endocytosis/ macropinocytosis”, “Fusion with host endosomal membrane”, “Viral factory”. To demonstrate the utility of a standard ontology for virus biology, this work was completed by annotating virus data in the ViralZone, UniProtKB and Gene Ontology databases.

Collaboration


Dive into the Chantal Hulo's collaboration.

Top Co-Authors

Avatar

Philippe Le Mercier

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Patrick Masson

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ioannis Xenarios

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Sylvain Poux

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Andrea H. Auchincloss

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Edouard de Castro

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Alan Bridge

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Lydie Bougueleret

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Jane Lomax

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Rebecca E. Foulger

European Bioinformatics Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge