Philippe Nizard
Paris-Sorbonne University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Philippe Nizard.
Blood | 2014
Jean-François Emile; Eli L. Diamond; Zofia Hélias-Rodzewicz; Fleur Cohen-Aubart; Frédéric Charlotte; David M. Hyman; Eunhee Kim; Raajit Rampal; Minal Patel; Chezi Ganzel; Shlomzion Aumann; Gladwys Faucher; Catherine Le Gall; Karen Leroy; Magali Colombat; J.E. Kahn; Salim Trad; Philippe Nizard; Jean Donadieu; Valérie Taly; Zahir Amoura; Omar Abdel-Wahab; Julien Haroche
Erdheim-Chester disease (ECD) is a rare histiocytic disorder that is challenging to diagnose and treat. We performed molecular analysis of BRAF in the largest cohort of ECD patients studied to date followed by N/KRAS, PIK3CA, and AKT1 mutational analysis in BRAF wild-type patients. Forty-six of 80 (57.5%) of patients were BRAFV600E-mutant. NRAS mutations were detected in 3 of 17 ECD BRAFV600E wild-type patients. PIK3CA mutations (p.E542K, p.E545K, p.A1046T, and p.H1047R) were detected in 7 of 55 patients, 4 of whom also had BRAF mutations. Mutant NRAS was present in peripheral blood CD14(+) cells, but not lymphoid cells, from an NRASQ61R mutant patient. Our results underscore the central role of RAS-RAF-MEK-ERK activation in ECD and identify an important role of activation of RAS-PI3K-AKT signaling in ECD. These results provide a rationale for targeting mutant RAS or PI3K/AKT/mTOR signaling in the subset of ECD patients with NRAS or PIK3CA mutations.
Clinical Cancer Research | 2015
Pierre Laurent-Puig; Deniz Pekin; Corinne Normand; Steve Kotsopoulos; Philippe Nizard; Karla Perez-Toralla; Rachel Rowell; Jeffrey J. Olson; Preethi Srinivasan; Delphine Le Corre; Thevy Hor; Zakaria El Harrak; Xinyu Li; Darren R. Link; Olivier Bouché; Jean-François Emile; Bruno Landi; Valérie Boige; J. Brian Hutchison; Valérie Taly
Purpose: KRAS mutations are predictive of nonresponse to anti-EGFR therapies in metastatic colorectal cancer (mCRC). However, only 50% of nonmutated patients benefit from them. KRAS-mutated subclonal populations nondetectable by conventional methods have been suggested as the cause of early progression. Molecular analysis technology with high sensitivity and precision is required to test this hypothesis. Experimental Design: From two cohorts of patients with mCRC, 136 KRAS, NRAS, and BRAF wild-type tumors with sufficient tumor material to perform highly sensitive picodroplet digital PCR (dPCR) and 41 KRAS-mutated tumors were selected. All these patients were treated by anti-EGFR therapy. dPCR was used for KRAS or BRAF mutation screening and compared with qPCR. Progression-free survival (PFS) and overall survival (OS) were analyzed according to the KRAS-mutated allele fraction. Results: In addition to the confirmation of the 41 patients with KRAS-mutated tumors, dPCR also identified KRAS mutations in 22 samples considered as KRAS wild-type by qPCR. The fraction of KRAS-mutated allele quantified by dPCR was inversely correlated with anti-EGFR therapy response rate (P < 0.001). In a Cox model, the fraction of KRAS-mutated allele was associated with worse PFS and OS. Patients with less than 1% of mutant KRAS allele have similar PFS and OS than those with wild-type KRAS tumors. Conclusions: This study suggests that patients with mCRC with KRAS-mutated subclones (at least those with a KRAS-mutated subclones fraction lower or equal to 1%) had a benefit from anti-EGFR therapies. Clin Cancer Res; 21(5); 1087–97. ©2014 AACR.
Traffic | 2007
Philippe Nizard; Susanne Tetley; Yves Le Dréan; Tanguy Watrin; Pascale Le Goff; Mark R. Wilson; Denis Michel
Clusterin is a usually secreted glycoprotein with chaperone properties. Recently, it has been suggested that clusterin isoforms reside in the nuclear and cytosolic compartments of human cell types, where they can influence various cellular programs including DNA repair, transcription and apoptosis. Several mechanisms have been proposed to explain this atypical location, including alternative transcription initiation and alternative splicing. However, none of these have been unequivocally established as occurring in live cells. Here we provide direct experimental evidence that in live intact cells, under certain stress conditions, clusterin can evade the secretion pathway and reach the cytosol. This was demonstrated using several complementary approaches. Flow cytometry and selective permeabilization of U251 cell membranes with digitonin allowed detection of cytosolic clusterin in stressed U251 cells. In addition, a stringent enzymatic assay reliant upon the exclusively cytosolic deubiquitinase enzymes confirmed that clusterin synthesized with its hydrophobic secretion signal sequence can reach the cytosol of U251 cells. The retrotranslocation of clusterin is likely to occur through a mechanism similar to the endoplasmic reticulum (ER)‐associated protein degradation pathway and involves passage through the Golgi apparatus. We also report that the ER‐associated ubiquitin ligase Hrd1/synoviolin can interact with, and ubiquitinate clusterin. The possible biological functions of these novel behaviours of clusterin are discussed.
Clinical Chemistry | 2016
Sonia Garrigou; Géraldine Perkins; Fanny Garlan; Corinne Normand; Audrey Didelot; Delphine Le Corre; Sanam Peyvandi; Claire Mulot; Ralph Niarra; Pascaline Aucouturier; Gilles Chatellier; Philippe Nizard; Karla Perez-Toralla; Eleonora Zonta; Cécile Charpy; Anais Pujals; Caroline Barau; Olivier Bouché; Jean-François Emile; Denis Pezet; Frédéric Bibeau; J. Brian Hutchison; Darren R. Link; Aziz Zaanan; Pierre Laurent-Puig; Iradj Sobhani; Valérie Taly
BACKGROUND Circulating tumor DNA (ctDNA) has emerged as a good candidate for tracking tumor dynamics in different cancer types, potentially avoiding repeated tumor biopsies. Many different genes can be mutated within a tumor, complicating procedures for tumor monitoring, even with highly sensitive next-generation sequencing (NGS) strategies. Droplet-based digital PCR (dPCR) is a highly sensitive and quantitative procedure, allowing detection of very low amounts of circulating tumor genetic material, but can be limited in the total number of target loci monitored. METHODS We analyzed hypermethylation of 3 genes, by use of droplet-based dPCR in different stages of colorectal cancer (CRC), to identify universal markers for tumor follow-up. RESULTS Hypermethylation of WIF1 (WNT inhibitory factor 1) and NPY (neuropeptide Y) genes was significantly higher in tumor tissue compared to normal tissue, independently of tumor stage. All tumor tissues appeared positive for one of the 2 markers. Methylated ctDNA (MetctDNA) was detected in 80% of metastatic CRC and 45% of localized CRC. For samples with detectable mutations in ctDNA, MetctDNA and mutant ctDNA (MutctDNA) fractions were correlated. During follow-up of different stage CRC patients, MetctDNA changes allowed monitoring of tumor evolution. CONCLUSIONS These results indicate that MetctDNA could be used as a universal surrogate marker for tumor follow-up in CRC patients, and monitoring MetctDNA by droplet-based dPCR could avoid the need for monitoring mutations.
FEBS Letters | 1998
Philippe Nizard; Dominique Liger; Carole Gaillard; Daniel Gillet
We have constructed a fusion protein, T‐ZZ, in which the IgG‐Fc binding protein ZZ was fused to the C‐terminus of the diphtheria toxin transmembrane domain (T domain). While soluble at neutral pH, T‐ZZ retained the capacity of the T domain to bind to phospholipid membranes at acidic pH. Once anchored to the membrane, the ZZ part of the protein was capable of binding mouse monoclonal or rabbit polyclonal IgG. Our results show that the T‐ZZ protein can function as a pH sensitive membrane anchor for the linkage of IgG to the membrane of lipid vesicles, adherent and non‐adherent cells.
Advances in Clinical Chemistry | 2015
Eleonora Zonta; Philippe Nizard; Valérie Taly
Many methods have been developed for DNA integrity assessment including electrophoresis-based procedures, quantitative PCR, and, more recently, microfluidics-based procedures. DNA integrity evaluation can be employed for characterizing biological samples quality before extensive genomic analysis and also finds applications in reproductive medicine, prenatal diagnostics, or cancer research. In this chapter, we will focus on the assessment of DNA integrity in cancer research. In particular, we will present the application of the determination of DNA integrity for tracking of circulating tumor DNA. Finally, we will conclude by illustrating the potential innovative application of DNA integrity as a biomarker in clinical research, especially for prognostic purposes, patient follow-up, or early diagnosis.
Scientific Reports | 2017
Heng Lu; Ouriel Caen; Jérémy Vrignon; Eleonora Zonta; Zakaria El Harrak; Philippe Nizard; Jean-Christophe Baret; Valérie Taly
Droplet-based microfluidics is extensively and increasingly used for high-throughput single-cell studies. However, the accuracy of the cell counting method directly impacts the robustness of such studies. We describe here a simple and precise method to accurately count a large number of adherent and non-adherent human cells as well as bacteria. Our microfluidic hemocytometer provides statistically relevant data on large populations of cells at a high-throughput, used to characterize cell encapsulation and cell viability during incubation in droplets.
M S-medecine Sciences | 2015
Ouriel Caen; Philippe Nizard; Sonia Garrigou; Karla Perez-Toralla; Eleonora Zonta; Pierre Laurent-Puig; Taly
Genetic markers are now widely used in the clinics, particularly in cancer patient management. Indeed, these tumor markers can help in the diagnosis and prognosis of the disease, and provide valuable information for treatment orientation in the context of personalized medicine. The presence of circulating cell-free tumor DNA (cftDNA) and thus of tumor markers in the blood can be considered to partly avoid the use of solid biopsies. The use of blood samples, as liquid biopsies, is less invasive and described as more representative of tumor heterogeneity. However, cftDNA can be found in blood in low proportion that can vary according to the nature and the progression of the tumor. For these reasons, the use of highly sensitive, specific and ideally quantitative methods for its detection are required. These requirements constituted until recently a technological limit, which now can be overcome thanks to digital PCR. This technology could now become a very efficient and non-invasive tool in oncology, complementary to conventional diagnostic techniques.
M S-medecine Sciences | 2015
Karla Perez-Toralla; Deniz Pekin; Jean-François Bartolo; Fanny Garlan; Philippe Nizard; Pierre Laurent-Puig; Jean-Christophe Baret; Taly
Polymerase chain reaction based techniques have been widely used in laboratory settings. Several applications in oncology, virology or prenatal diagnosis require highly sensitive detection methods, which cannot be achieved with conventional techniques. Digital PCR (dPCR) was developed from the association of PCR and limiting dilution procedures. It is based on the compartmentalization of DNA molecules in small volumes. Controlling the size and the content of each compartment is crucial to obtain a high sensitivity with a single molecule resolution. Microfluidics offers promising tools to isolate DNA fragments such as microdroplets, microchambers or microwells with volumes ranging from few picoliters to nanoliters. The review provides an overview of recent developments of microfluidics dPCR platforms and how this technology can influence the management of cancer patients.
M S-medecine Sciences | 2015
Karla Perez-Toralla; Deniz Pekin; Jean-François Bartolo; Fanny Garlan; Philippe Nizard; Pierre Laurent-Puig; Jean-Christophe Baret; Valérie Taly
Polymerase chain reaction based techniques have been widely used in laboratory settings. Several applications in oncology, virology or prenatal diagnosis require highly sensitive detection methods, which cannot be achieved with conventional techniques. Digital PCR (dPCR) was developed from the association of PCR and limiting dilution procedures. It is based on the compartmentalization of DNA molecules in small volumes. Controlling the size and the content of each compartment is crucial to obtain a high sensitivity with a single molecule resolution. Microfluidics offers promising tools to isolate DNA fragments such as microdroplets, microchambers or microwells with volumes ranging from few picoliters to nanoliters. The review provides an overview of recent developments of microfluidics dPCR platforms and how this technology can influence the management of cancer patients.