Yves Le Dréan
University of Rennes
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yves Le Dréan.
International Journal of Microwave and Wireless Technologies | 2011
Maxim Zhadobov; Nacer Chahat; Ronan Sauleau; Catherine Le Quément; Yves Le Dréan
The biocompatibility of millimeter-wave devices and systems is an important issue due to the wide number of emerging body-centric wireless applications at millimeter waves. This review article provides the state of knowledge in this field and mainly focuses on recent results and advances related to the different aspects of millimeter-wave interactions with the human body. Electromagnetic, thermal, and biological aspects are considered and analyzed for exposures in the 30-100 GHz range with a particular emphasis on the 60-GHz band. Recently introduced dosimetric techniques and specific instrumentation for bioelectromagnetic laboratory studies are also presented. Finally, future trends are discussed.
Traffic | 2007
Philippe Nizard; Susanne Tetley; Yves Le Dréan; Tanguy Watrin; Pascale Le Goff; Mark R. Wilson; Denis Michel
Clusterin is a usually secreted glycoprotein with chaperone properties. Recently, it has been suggested that clusterin isoforms reside in the nuclear and cytosolic compartments of human cell types, where they can influence various cellular programs including DNA repair, transcription and apoptosis. Several mechanisms have been proposed to explain this atypical location, including alternative transcription initiation and alternative splicing. However, none of these have been unequivocally established as occurring in live cells. Here we provide direct experimental evidence that in live intact cells, under certain stress conditions, clusterin can evade the secretion pathway and reach the cytosol. This was demonstrated using several complementary approaches. Flow cytometry and selective permeabilization of U251 cell membranes with digitonin allowed detection of cytosolic clusterin in stressed U251 cells. In addition, a stringent enzymatic assay reliant upon the exclusively cytosolic deubiquitinase enzymes confirmed that clusterin synthesized with its hydrophobic secretion signal sequence can reach the cytosol of U251 cells. The retrotranslocation of clusterin is likely to occur through a mechanism similar to the endoplasmic reticulum (ER)‐associated protein degradation pathway and involves passage through the Golgi apparatus. We also report that the ER‐associated ubiquitin ligase Hrd1/synoviolin can interact with, and ubiquitinate clusterin. The possible biological functions of these novel behaviours of clusterin are discussed.
Molecular and Cellular Endocrinology | 1995
Yves Le Dréan; Laurence Kern; Farzad Pakdel; Yves Valotaire
The estrogen receptor is a transcription factor that mediates the actions of estrogens which plays a major role in salmonid vitellogenesis. Previously, we cloned and described the estradiol receptor in rainbow trout. To study the transactivation characteristics, the full length cDNA was inserted in an expression vector and tested by transfection on an estrogen-dependent promoter (pERE-TK-CAT). For the first time, direct comparison between the trout receptor (rtER) and human receptor (hER) in an analogous system has been possible. We demonstrate that rtER can, like hER, transactivate transcription in a strictly hormone-dependent manner. The specificity and sensitivity of the rtER response to different steroids have been studied. With rtER, the E2 concentration needed for half maximal activation is 10 times higher than with hER. In addition, we show that rtER has a weak affinity for androgens and transactivation could be induced using high testosterone concentration. Experiments show that both rtER and hER have an equal specificity for estrogens but that the rtER binds its ligand with a lower sensitivity than hER. Several hypotheses concerning the role of main amino acids within the receptor protein are proposed based on the different properties of the receptors and comparison of sequences.
Journal of Cell Science | 2003
Laure Debure; Jean-Luc Vayssière; Vincent Rincheval; Fabien Loison; Yves Le Dréan; Denis Michel
Clusterin is a puzzling protein upregulated in many diseased tissues, presented as either a survival or a death protein. The role of clusterin might depend on the final maturation and localization of the protein, which can be secreted or reside inside cells, either after in situ synthesis or uptake of extracellular clusterin. We studied the biological effects of intracellular clusterin and observed that clusterin forms containing the α-chain region strongly accumulated in an ubiquitinated form in juxtanuclear aggregates meeting the main criterions of aggresomes and leading to profound alterations of the mitochondrial network. The viability of cells transfected by intracellular forms of clusterin was improved by overexpression of Bcl-2, and caspase inhibition was capable of rescuing cells expressing clusterin, which presented an altered mitochondrial permeability. We propose that, although it might be an inherently pro-survival and anti-apoptotic protein expressed by cells under stress in an attempt to protect themselves, clusterin can become highly cytotoxic when accumulated in the intracellular compartment. This activity might reconcile the opposite purported influences of clusterin on cell survival and explain how clusterin can be causally involved in neurodegeneration.
Bioelectromagnetics | 2012
Maxim Zhadobov; Ronan Sauleau; Robin Augustine; Catherine Le Quément; Yves Le Dréan; Daniel Thouroude
Due to the expected mass deployment of millimeter-wave wireless technologies, thresholds of potential millimeter-wave-induced biological and health effects should be carefully assessed. The main purpose of this study is to propose, optimize, and characterize a near-field exposure configuration allowing illumination of cells in vitro at 60 GHz with power densities up to several tens of mW/cm(2) . Positioning of a tissue culture plate containing cells has been optimized in the near-field of a standard horn antenna operating at 60 GHz. The optimal position corresponds to the maximal mean-to-peak specific absorption rate (SAR) ratio over the cell monolayer, allowing the achievement of power densities up to 50 mW/cm(2) at least. Three complementary parameters have been determined and analyzed for the exposed cells, namely the power density, SAR, and temperature dynamics. The incident power density and SAR have been computed using the finite-difference time-domain (FDTD) method. The temperature dynamics at different locations inside the culture medium are measured and analyzed for various power densities. Local SAR, determined based on the initial rate of temperature rise, is in a good agreement with the computed SAR (maximal difference of 5%). For the optimized exposure setup configuration, 73% of cells are located within the ±3 dB region with respect to the average SAR. It is shown that under the considered exposure conditions, the maximal power density, local SAR, and temperature increments equal 57 mW/cm(2) , 1.4 kW/kg, and 6 °C, respectively, for the radiated power of 425 mW.
Bioelectromagnetics | 2012
Maxim Zhadobov; Robin Augustine; Ronan Sauleau; Stanislav I. Alekseev; Alessandra Di Paola; Catherine Le Quément; Yonis Soubere Mahamoud; Yves Le Dréan
The main purpose of this study is to provide experimental data on the complex permittivity of some biological solutions in the 2-67 GHz range at room and human body temperatures. The permittivity measurements are performed using an open-ended coaxial probe. Permittivity spectra of several representative monomolecular solutions of proteins, amino acids, nucleic acids, and carbohydrates are analyzed and compared. Furthermore, measurements have also been performed for complex biomolecular solutions, including bovine serum albumin (BSA)-DNA-glucose mixture, culture medium, and yeast extract solution. The results demonstrate that for concentrations below 1%, the permittivity spectra of the solutions do not substantially differ from that of distilled water. Measurements carried out for 4% and 20% BSA solutions show that the presence of proteins results in a decrease in permittivity. For highly concentrated RNA solutions (3%), a slight increase in the imaginary part of the permittivity is observed below 10 GHz. Experimental data show that free water permittivity can be used for modeling of the culture medium above 10 GHz. However, at lower frequencies a substantial increase in the imaginary part of the permittivity due to ionic conductivity should be carefully taken into account. A similar increase has also been observed for the yeast extract solution in the lower frequency region of the considered spectrum. Above 10 GHz, the high concentration of proteins and other low-permittivity components of the yeast extract solution results in a decrease in the complex permittivity compared to that of water. Obtained data are of utmost importance for millimeter-wave dosimetry studies.
Bioelectromagnetics | 2012
Catherine Le Quément; Christophe Nicolas Nicolaz; Maxim Zhadobov; Fabienne Desmots; Ronan Sauleau; Marc Aubry; Denis Michel; Yves Le Dréan
The main purpose of this study is to investigate potential responses of skin cells to millimeter wave (MMW) radiation increasingly used in the wireless technologies. Primary human skin cells were exposed for 1, 6, or 24 h to 60.4 GHz with an average incident power density of 1.8 mW/cm(2) and an average specific absorption rate of 42.4 W/kg. A large-scale analysis was performed to determine whether these exposures could affect the gene expression. Gene expression microarrays containing over 41,000 unique human transcript probe sets were used, and data obtained for sham and exposed cells were compared. No significant difference in gene expression was observed when gene expression values were subjected to a stringent statistical analysis such as the Benjamini-Hochberg procedure. However, when a t-test was employed to analyze microarray data, 130 transcripts were found to be potentially modulated after exposure. To further quantitatively analyze these preselected transcripts, real-time PCR was performed on 24 genes with the best combination of high fold change and low P-value. Five of them, namely CRIP2, PLXND1, PTX3, SERPINF1, and TRPV2, were confirmed as differentially expressed after 6 h of exposure. To the best of our knowledge, this is the first large-scale study reporting on potential gene expression modification associated with MMW radiation used in wireless communication applications.
BMC Cancer | 2014
Antoine Boudot; Gwenneg Kerdivel; Sylvain Lecomte; Gilles Flouriot; Mireille Desille; Florence Godey; Jean Levêque; Patrick Tas; Yves Le Dréan; Farzad Pakdel
BackgroundThe orphan receptors COUP-TF (chicken ovalbumin upstream promoter transcription factor) I and II are members of the nuclear receptor superfamily that play distinct and critical roles in vertebrate organogenesis. The involvement of COUP-TFs in cancer development has recently been suggested by several studies but remains poorly understood.MethodsMCF-7 breast cancer cells overexpressing COUP-TFI and human breast tumors were used to investigate the role of COUP-TFI in the regulation of CXCL12/CXCR4 signaling axis in relation to cell growth and migration. We used Immunofluorescence, western-blot, RT-PCR, Formaldehyde-assisted Isolation of Regulatory Elements (FAIRE) assays, as well as cell proliferation and migration assays.ResultsPreviously, we showed that COUP-TFI expression is enhanced in breast cancer compared to normal tissue. Here, we report that the CXCL12/CXCR4 signaling pathway, a crucial pathway in cell growth and migration, is an endogenous target of COUP-TFI in breast cancer cells. The overexpression of COUP-TFI in MCF-7 cells inhibits the expression of the chemokine CXCL12 and markedly enhances the expression of its receptor, CXCR4. Our results demonstrate that the modification of CXCL12/CXCR4 expression by COUP-TFI is mediated by the activation of epithelial growth factor (EGF) and the EGF receptor. Furthermore, we provide evidence that these effects of COUP-TFI increase the growth and motility of MCF-7 cells in response to CXCL12. Cell migration toward a CXCL12 gradient was inhibited by AMD3100, a specific antagonist of CXCR4, or in the presence of excess CXCL12 in the cell culture medium. The expression profiles of CXCR4, CXCR7, CXCL12, and COUP-TFI mRNA in 82 breast tumors and control non-tumor samples were measured using real-time PCR. CXCR4 expression was found to be significantly increased in the tumors and correlated with the tumor grade, whereas the expression of CXCL12 was significantly decreased in the tumors compared with the healthy samples. Significantly higher COUP-TFI mRNA expression was also detected in grade 1 tumors.ConclusionsTogether, our mechanistic in vitro assays and in vivo results suggest that a reduction in chemokine CXCL12 expression, with an enhancement of CXCR4 expression, provoked by COUP-TFI, could be associated with an increase in the invasive potential of breast cancer cells.
Bioelectromagnetics | 2009
Christophe Nicolas Nicolaz; M. Zhadobov; Fabienne Desmots; Armelle Ansart; Ronan Sauleau; Daniel Thouroude; Denis Michel; Yves Le Dréan
The main purpose of this article is to study potential biological effects of low-power millimeter waves (MMWs) on endoplasmic reticulum (ER), an organelle sensitive to a wide variety of environmental insults and involved in a number of pathologies. We considered exposure frequencies around 60 GHz in the context of their near-future applications in wireless communication systems. Radiations within this frequency range are strongly absorbed by oxygen molecules, and biological species have never been exposed to such radiations in natural environmental conditions. A set of five discrete frequencies has been selected; three of them coincide with oxygen spectral lines (59.16, 60.43, and 61.15 GHz) and two frequencies correspond to the spectral line overlap regions (59.87 and 60.83 GHz). Moreover, we used a microwave spectroscopy approach to select eight frequencies corresponding to the spectral lines of various molecular groups within 59-61 GHz frequency range. The human glial cell line, U-251 MG, was exposed or sham-exposed for 24 h with a peak incident power density of 0.14 mW/cm(2). The average specific absorption rate (SAR) within the cell monolayer ranges from 2.64 +/- 0.08 to 3.3 +/- 0.1 W/kg depending on the location of the exposed well. We analyzed by quantitative reverse transcription-polymerase chain reaction (RT-PCR) the level of expression of two endogenous ER-stress biomarkers, namely, the chaperones BiP/GRP78 and ORP150/GRP170. It was found that exposure to low-power MMW does not significantly modify the mRNA levels of these stress-sensitive genes suggesting that ER homeostasis is not altered by low-power MMW at the considered frequencies.
Fish Physiology | 1994
Yves Le Dréan; Farzad Pakdel; Yves Valotaire
Publisher Summary This chapter discusses the structure and regulation of genes for estrogen receptors in fishes. In fish, the main effect of estradiol (E 2 ) is the control of vitellogenesis. Exogenous vitellogenesis is the period of egg yolk accumulation in a growing oocyte. In the absence of hormone, the estrogen receptor is a part of an oligomeric complex. Hormone binding to the receptor allows the 8.S complex to dissociate and leads to receptor activation. After activation by the ligand, the estrogen receptor modifies the transcriptional activity to various genes. Experiments carried out with site-directed mutagenesis in the zinc fingers identified amino acids involved in the recognition and binding of the estrogen responsive element in receptor dimerization, and in transactivation functions. It is found that the rtER can also bind with a low affinity other compounds like xenobiotics or phytoestrogens that induce a conformational change sufficient to transactivate some hormone-dependent genes such as vitellogenin. The cloning of steroid receptor genes, as well as the rtER gene, indicates that the position of the introns is strictly conserved.