Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philippe P. Roux is active.

Publication


Featured researches published by Philippe P. Roux.


Microbiology and Molecular Biology Reviews | 2004

ERK and p38 MAPK-Activated Protein Kinases: a Family of Protein Kinases with Diverse Biological Functions

Philippe P. Roux; John Blenis

SUMMARY Conserved signaling pathways that activate the mitogen-activated protein kinases (MAPKs) are involved in relaying extracellular stimulations to intracellular responses. The MAPKs coordinately regulate cell proliferation, differentiation, motility, and survival, which are functions also known to be mediated by members of a growing family of MAPK-activated protein kinases (MKs; formerly known as MAPKAP kinases). The MKs are related serine/threonine kinases that respond to mitogenic and stress stimuli through proline-directed phosphorylation and activation of the kinase domain by extracellular signal-regulated kinases 1 and 2 and p38 MAPKs. There are currently 11 vertebrate MKs in five subfamilies based on primary sequence homology: the ribosomal S6 kinases, the mitogen- and stress-activated kinases, the MAPK-interacting kinases, MAPK-activated protein kinases 2 and 3, and MK5. In the last 5 years, several MK substrates have been identified, which has helped tremendously to identify the biological role of the members of this family. Together with data from the study of MK-knockout mice, the identities of the MK substrates indicate that they play important roles in diverse biological processes, including mRNA translation, cell proliferation and survival, and the nuclear genomic response to mitogens and cellular stresses. In this article, we review the existing data on the MKs and discuss their physiological functions based on recent discoveries.


Current Biology | 2003

Tuberous Sclerosis Complex Gene Products, Tuberin and Hamartin, Control mTOR Signaling by Acting as a GTPase-Activating Protein Complex toward Rheb

Andrew R. Tee; Brendan D. Manning; Philippe P. Roux; Lewis C. Cantley; John Blenis

BACKGROUND Tuberous Sclerosis Complex (TSC) is a genetic disorder that occurs through the loss of heterozygosity of either TSC1 or TSC2, which encode Hamartin or Tuberin, respectively. Tuberin and Hamartin form a tumor suppressor heterodimer that inhibits the mammalian target of rapamycin (mTOR) nutrient signaling input, but how this occurs is unclear. RESULTS We show that the small G protein Rheb (Ras homolog enriched in brain) is a molecular target of TSC1/TSC2 that regulates mTOR signaling. Overexpression of Rheb activates 40S ribosomal protein S6 kinase 1 (S6K1) but not p90 ribosomal S6 kinase 1 (RSK1) or Akt. Furthermore, Rheb induces phosphorylation of eukaryotic initiation factor 4E binding protein 1 (4E-BP1) and causes 4E-BP1 to dissociate from eIF4E. This dissociation is completely sensitive to rapamycin (an mTOR inhibitor) but not wortmannin (a phosphoinositide 3-kinase [PI3K] inhibitor). Rheb also activates S6K1 during amino acid insufficiency via a rapamycin-sensitive mechanism, suggesting that Rheb participates in nutrient signaling through mTOR. Moreover, Rheb does not activate a S6K1 mutant that is unresponsive to mTOR-mediated signals, confirming that Rheb functions upstream of mTOR. Overexpression of the Tuberin-Hamartin heterodimer inhibits Rheb-mediated S6K1 activation, suggesting that Tuberin functions as a Rheb GTPase activating protein (GAP). Supporting this notion, TSC patient-derived Tuberin GAP domain mutants were unable to inactivate Rheb in vivo. Moreover, in vitro studies reveal that Tuberin, when associated with Hamartin, acts as a Rheb GTPase-activating protein. Finally, we show that membrane localization of Rheb is important for its biological activity because a farnesylation-defective mutant of Rheb stimulated S6K1 activation less efficiently. CONCLUSIONS We show that Rheb acts as a novel mediator of the nutrient signaling input to mTOR and is the molecular target of TSC1 and TSC2 within mammalian cells.


Progress in Neurobiology | 2002

Neurotrophin signaling through the p75 neurotrophin receptor.

Philippe P. Roux; Philip A. Barker

The neurotrophins are growth factors that play critical roles in the development, maintenance, survival, and death of the nervous system. The signal transducing systems that mediate the diverse biological functions of the neurotrophins are initiated by their interactions with two categories of cell surface receptors, the Trk family of tyrosine kinases and the p75 neurotrophin receptor (p75NTR). While the Trk receptors are responsible for most of the survival and growth properties of the neurotrophins, the actions of p75NTR fall into two categories. First, p75NTR is a Trk co-receptor that can enhance or suppress neurotrophin-mediated Trk receptor activity. Second, p75NTR autonomously activates signaling cascades that result in the induction of apoptosis or in the promotion of survival. The signaling cascades activated by p75NTR remain elusive, but structural and functional differences between p75NTR and other tumor necrosis factor receptor (TNFR) superfamily members suggest that p75NTR employs distinct signaling pathways. p75NTR has been shown to activate the NF-kappaB, Akt, and JNK pathways and interacts with several adaptor proteins. Of these, NRAGE, NADE, and NRIF have been associated with the induction of apoptosis, and FAP-1, RIP2, and TRAF6 appear to promote cellular survival. It remains a major challenge to link the various p75NTR binding proteins to specific p75NTR-dependent functions, but the identification of p75NTR interactors and signaling pathways has sparked new directions in p75NTR research, and will provide a better understanding of this enigmatic receptor.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation

Andrew Y. Choo; Sang-Oh Yoon; Sang Gyun Kim; Philippe P. Roux; John Blenis

The mammalian translational initiation machinery is a tightly controlled system that is composed of eukaryotic initiation factors, and which controls the recruitment of ribosomes to mediate cap-dependent translation. Accordingly, the mTORC1 complex functionally controls this cap-dependent translation machinery through the phosphorylation of its downstream substrates 4E-BPs and S6Ks. It is generally accepted that rapamycin, a specific inhibitor of mTORC1, is a potent translational repressor. Here we report the unexpected discovery that rapamycins ability to regulate cap-dependent translation varies significantly among cell types. We show that this effect is mechanistically caused by rapamycins differential effect on 4E-BP1 versus S6Ks. While rapamycin potently inhibits S6K activity throughout the duration of treatment, 4E-BP1 recovers in phosphorylation within 6 h despite initial inhibition (1–3 h). This reemerged 4E-BP1 phosphorylation is rapamycin-resistant but still requires mTOR, Raptor, and mTORC1s activity. Therefore, these results explain how cap-dependent translation can be maintained in the presence of rapamycin. In addition, we have also defined the condition by which rapamycin can control cap-dependent translation in various cell types. Finally, we show that mTOR catalytic inhibitors are effective inhibitors of the rapamycin-resistant phenotype.


Journal of Biological Chemistry | 2007

RAS/ERK Signaling Promotes Site-specific Ribosomal Protein S6 Phosphorylation via RSK and Stimulates Cap-dependent Translation

Philippe P. Roux; David Shahbazian; Hieu Vu; Marina K. Holz; Michael S. Cohen; Jack Taunton; Nahum Sonenberg; John Blenis

Converging signals from the mammalian target of rapamycin (mTOR) and phosphoinositide 3-kinase (PI3K) pathways are well established to modulate translation initiation. Less is known regarding the molecular basis of protein synthesis regulated by other inputs, such as agonists of the Ras/extracellular signal-regulated kinase (ERK) signaling cascade. Ribosomal protein (rp) S6 is a component of the 40S ribosomal subunit that becomes phosphorylated at several serine residues upon mitogen stimulation, but the exact molecular mechanisms regulating its phosphorylation and the function of phosphorylated rpS6 is poorly understood. Here, we provide evidence that activation of the p90 ribosomal S6 kinases (RSKs) by serum, growth factors, tumor promoting phorbol esters, and oncogenic Ras is required for rpS6 phosphorylation downstream of the Ras/ERK signaling cascade. We demonstrate that while ribosomal S6 kinase 1 (S6K1) phosphorylates rpS6 at all sites, RSK exclusively phosphorylates rpS6 at Ser235/236 in vitro and in vivo using an mTOR-independent mechanism. Mutation of rpS6 at Ser235/236 reveals that phosphorylation of these sites promotes its recruitment to the 7-methylguanosine cap complex, suggesting that Ras/ERK signaling regulates assembly of the translation preinitiation complex. These data demonstrate that RSK provides an mTOR-independent pathway linking the Ras/ERK signaling cascade to the translational machinery.


The EMBO Journal | 2006

The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity

David Shahbazian; Philippe P. Roux; Virginie Mieulet; Michael S. Cohen; Brian Raught; Jack Taunton; John W. B. Hershey; John Blenis; Mario Pende; Nahum Sonenberg

The eukaryotic translation initiation factor 4B (eIF4B) plays a critical role in recruiting the 40S ribosomal subunit to the mRNA. In response to insulin, eIF4B is phosphorylated on Ser422 by S6K in a rapamycin‐sensitive manner. Here we demonstrate that the p90 ribosomal protein S6 kinase (RSK) phosphorylates eIF4B on the same residue. The relative contribution of the RSK and S6K modules to the phosphorylation of eIF4B is growth factor‐dependent, and the two phosphorylation events exhibit very different kinetics. The S6K and RSK proteins are members of the AGC protein kinase family, and require PDK1 phosphorylation for activation. Consistent with this requirement, phosphorylation of eIF4B Ser422 is abrogated in PDK1 null embryonic stem cells. Phosphorylation of eIF4B on Ser422 by RSK and S6K is physiologically significant, as it increases the interaction of eIF4B with the eukaryotic translation initiation factor 3.


Molecular and Cellular Biology | 2010

mTORC1-Activated S6K1 Phosphorylates Rictor on Threonine 1135 and Regulates mTORC2 Signaling

Louis-André Julien; Audrey Carrière; Julie Moreau; Philippe P. Roux

ABSTRACT The mammalian target of rapamycin (mTOR) is a conserved Ser/Thr kinase that forms two functionally distinct complexes important for nutrient and growth factor signaling. While mTOR complex 1 (mTORC1) regulates mRNA translation and ribosome biogenesis, mTORC2 plays an important role in the phosphorylation and subsequent activation of Akt. Interestingly, mTORC1 negatively regulates Akt activation, but whether mTORC1 signaling directly targets mTORC2 remains unknown. Here we show that growth factors promote the phosphorylation of Rictor (rapamycin-insensitive companion of mTOR), an essential subunit of mTORC2. We found that Rictor phosphorylation requires mTORC1 activity and, more specifically, the p70 ribosomal S6 kinase 1 (S6K1). We identified several phosphorylation sites in Rictor and found that Thr1135 is directly phosphorylated by S6K1 in vitro and in vivo, in a rapamycin-sensitive manner. Phosphorylation of Rictor on Thr1135 did not affect mTORC2 assembly, kinase activity, or cellular localization. However, cells expressing a Rictor T1135A mutant were found to have increased mTORC2-dependent phosphorylation of Akt. In addition, phosphorylation of the Akt substrates FoxO1/3a and glycogen synthase kinase 3α/β (GSK3α/β) was found to be increased in these cells, indicating that S6K1-mediated phosphorylation of Rictor inhibits mTORC2 and Akt signaling. Together, our results uncover a new regulatory link between the two mTOR complexes, whereby Rictor integrates mTORC1-dependent signaling.


Neuron | 2000

NRAGE, A Novel MAGE Protein, Interacts with the p75 Neurotrophin Receptor and Facilitates Nerve Growth Factor-Dependent Apoptosis

Amir H. Salehi; Philippe P. Roux; Chris J. Kubu; Christine Zeindler; Asha L. Bhakar; Laura-Lee Tannis; Joseph M. Verdi; Philip A. Barker

The mechanisms employed by the p75 neurotrophin receptor (p75NTR) to mediate neurotrophin-dependent apoptosis are poorly defined. Two-hybrid analyses were used to identify proteins involved in p75NTR apoptotic signaling, and a p75NTR binding partner termed NRAGE (for neurotrophin receptor-interacting MAGE homolog) was identified. NRAGE binds p75NTR in vitro and in vivo, and NRAGE associates with the plasma membrane when NGF is bound to p75NTR. NRAGE blocks the physical association of p75NTR with TrkA, and, conversely, TrkA overexpression eliminates NRAGE-mediated NGF-dependent death, indicating that interactions of NRAGE or TrkA with p75NTR are functionally and physically exclusive. NRAGE overexpression facilitates cell cycle arrest and permits NGF-dependent apoptosis within sympathetic neuron precursors cells. Our results show that NRAGE contributes to p75NTR-dependent cell death and suggest novel functions for MAGE family proteins.


Current Biology | 2008

Oncogenic MAPK signaling stimulates mTORC1 activity by promoting RSK-mediated raptor phosphorylation.

Audrey Carrière; Marie Cargnello; Louis-André Julien; Huanhuan Gao; Eric Bonneil; Pierre Thibault; Philippe P. Roux

BACKGROUND The mammalian target of rapamycin (mTOR) is a Ser/Thr kinase that controls cell growth in response to mitogens, as well as amino acid and energy sufficiency. The scaffolding protein Raptor binds to mTOR and recruits substrates to the rapamycin-sensitive mTOR complex 1 (mTORC1). Although Raptor has been shown to be essential for mTORC1 activity, the mechanisms regulating Raptor function remain unknown. RESULTS Here, we demonstrate that Raptor becomes highly phosphorylated on RXRXXpS/T consensus motifs after activation of the Ras/mitogen-activated protein kinase (MAPK) pathway. Using pharmacological inhibitors and RNA interference, we show that the p90 ribosomal S6 kinases (RSKs) 1 and 2 are required for Raptor phosphorylation in vivo and directly phosphorylate Raptor in vitro. Quantitative mass spectrometry and site-directed mutagenesis revealed that RSK specifically phosphorylates Raptor within an evolutionarily conserved region with no previously known function. Interestingly, expression of oncogenic forms of Ras and MEK that elevate mTORC1 activity induced strong and constitutive phosphorylation of Raptor on these residues. Importantly, we demonstrate that expression of Raptor mutants lacking RSK-dependent phosphorylation sites markedly reduced mTOR phosphotransferase activity, indicating that RSK-mediated phosphorylation of Raptor is important for mTORC1 activation by the Ras/MAPK pathway. CONCLUSIONS We propose a unique mode of mTOR regulation in which RSK-mediated phosphorylation of Raptor regulates mTORC1 activity and thus suggest a means by which the Ras/MAPK pathway might promote rapamycin-sensitive signaling independently of the PI3K/Akt pathway.


The EMBO Journal | 2010

mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide

Won Jun Oh; Chang chih Wu; Sung Jin Kim; Valeria Facchinetti; Louis André Julien; Monica Finlan; Philippe P. Roux; Bing Su; Estela Jacinto

The mechanisms that couple translation and protein processing are poorly understood in higher eukaryotes. Although mammalian target of rapamycin (mTOR) complex 1 (mTORC1) controls translation initiation, the function of mTORC2 in protein synthesis remains to be defined. In this study, we find that mTORC2 can colocalize with actively translating ribosomes and can stably interact with rpL23a, a large ribosomal subunit protein present at the tunnel exit. Exclusively during translation of Akt, mTORC2 mediates phosphorylation of the nascent polypeptide at the turn motif (TM) site, Thr450, to avoid cotranslational Akt ubiquitination. Constitutive TM phosphorylation occurs because the TM site is accessible, whereas the hydrophobic motif (Ser473) site is concealed in the ribosomal tunnel. Thus, mTORC2 can function cotranslationally by phosphorylating residues in nascent chains that are critical to attain proper conformation. Our findings reveal that mTOR links protein production with quality control.

Collaboration


Dive into the Philippe P. Roux's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yves Romeo

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacob A. Galan

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Philip A. Barker

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge