Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philip A. Barker is active.

Publication


Featured researches published by Philip A. Barker.


Molecular Cell | 2008

cIAP1 and cIAP2 Facilitate Cancer Cell Survival by Functioning as E3 Ligases that Promote RIP1 Ubiquitination

Mathieu J.M. Bertrand; Snezana Milutinovic; Kathleen M. Dickson; Wai Chi Ho; Alain Boudreault; Jon P. Durkin; John W. Gillard; James B. Jaquith; Stephen J. Morris; Philip A. Barker

The inhibitor of apoptosis (IAP) family of proteins enhances cell survival through mechanisms that remain uncertain. In this report, we show that cIAP1 and cIAP2 promote cancer cell survival by functioning as E3 ubiquitin ligases that maintain constitutive ubiquitination of the RIP1 adaptor protein. We demonstrate that AEG40730, a compound modeled on BIR-binding tetrapeptides, binds to cIAP1 and cIAP2, facilitates their autoubiquitination and proteosomal degradation, and causes a dramatic reduction in RIP1 ubiquitination. We show that cIAP1 and cIAP2 directly ubiquitinate RIP1 and induce constitutive RIP1 ubiquitination in cancer cells and demonstrate that constitutively ubiquitinated RIP1 associates with the prosurvival kinase TAK1. When deubiquitinated by AEG40730 treatment, RIP1 binds caspase-8 and induces apoptosis. These findings provide insights into the function of the IAPs and provide new therapeutic opportunities in the treatment of cancer.


Progress in Neurobiology | 2002

Neurotrophin signaling through the p75 neurotrophin receptor.

Philippe P. Roux; Philip A. Barker

The neurotrophins are growth factors that play critical roles in the development, maintenance, survival, and death of the nervous system. The signal transducing systems that mediate the diverse biological functions of the neurotrophins are initiated by their interactions with two categories of cell surface receptors, the Trk family of tyrosine kinases and the p75 neurotrophin receptor (p75NTR). While the Trk receptors are responsible for most of the survival and growth properties of the neurotrophins, the actions of p75NTR fall into two categories. First, p75NTR is a Trk co-receptor that can enhance or suppress neurotrophin-mediated Trk receptor activity. Second, p75NTR autonomously activates signaling cascades that result in the induction of apoptosis or in the promotion of survival. The signaling cascades activated by p75NTR remain elusive, but structural and functional differences between p75NTR and other tumor necrosis factor receptor (TNFR) superfamily members suggest that p75NTR employs distinct signaling pathways. p75NTR has been shown to activate the NF-kappaB, Akt, and JNK pathways and interacts with several adaptor proteins. Of these, NRAGE, NADE, and NRIF have been associated with the induction of apoptosis, and FAP-1, RIP2, and TRAF6 appear to promote cellular survival. It remains a major challenge to link the various p75NTR binding proteins to specific p75NTR-dependent functions, but the identification of p75NTR interactors and signaling pathways has sparked new directions in p75NTR research, and will provide a better understanding of this enigmatic receptor.


Neuron | 2000

NRAGE, A Novel MAGE Protein, Interacts with the p75 Neurotrophin Receptor and Facilitates Nerve Growth Factor-Dependent Apoptosis

Amir H. Salehi; Philippe P. Roux; Chris J. Kubu; Christine Zeindler; Asha L. Bhakar; Laura-Lee Tannis; Joseph M. Verdi; Philip A. Barker

The mechanisms employed by the p75 neurotrophin receptor (p75NTR) to mediate neurotrophin-dependent apoptosis are poorly defined. Two-hybrid analyses were used to identify proteins involved in p75NTR apoptotic signaling, and a p75NTR binding partner termed NRAGE (for neurotrophin receptor-interacting MAGE homolog) was identified. NRAGE binds p75NTR in vitro and in vivo, and NRAGE associates with the plasma membrane when NGF is bound to p75NTR. NRAGE blocks the physical association of p75NTR with TrkA, and, conversely, TrkA overexpression eliminates NRAGE-mediated NGF-dependent death, indicating that interactions of NRAGE or TrkA with p75NTR are functionally and physically exclusive. NRAGE overexpression facilitates cell cycle arrest and permits NGF-dependent apoptosis within sympathetic neuron precursors cells. Our results show that NRAGE contributes to p75NTR-dependent cell death and suggest novel functions for MAGE family proteins.


Neuron | 2004

p75NTR is positively promiscuous: Novel partners and new insights

Philip A. Barker

Although identified almost 20 years ago, the precise physiological role of the p75 neurotrophin receptor (p75NTR) has remained elusive. Recent studies have revealed that p75NTR is a component of three distinct receptor platforms that bind different ligands and that, under differing circumstances, facilitate cell survival, cell death, or growth inhibition. These recent developments provide new insights into the functions of this enigmatic receptor.


Proceedings of the National Academy of Sciences of the United States of America | 2010

De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia

Julie Gauthier; Nathalie Champagne; Ronald G. Lafrenière; Lan Xiong; Dan Spiegelman; Edna Brustein; Mathieu Lapointe; Huashan Peng; Mélanie Côté; Anne Noreau; Fadi F. Hamdan; Anjene Addington; Judith L. Rapoport; Lynn E. DeLisi; Marie-Odile Krebs; Ridha Joober; Ferid Fathalli; Fayçal Mouaffak; Ali P. Haghighi; Christian Neri; Marie-Pierre Dubé; Mark E. Samuels; Claude Marineau; Eric A. Stone; Philip A. Barker; Salvatore Carbonetto; Pierre Drapeau; Guy A. Rouleau

Schizophrenia likely results from poorly understood genetic and environmental factors. We studied the gene encoding the synaptic protein SHANK3 in 285 controls and 185 schizophrenia patients with unaffected parents. Two de novo mutations (R1117X and R536W) were identified in two families, one being found in three affected brothers, suggesting germline mosaicism. Zebrafish and rat hippocampal neuron assays revealed behavior and differentiation defects resulting from the R1117X mutant. As mutations in SHANK3 were previously reported in autism, the occurrence of SHANK3 mutations in subjects with a schizophrenia phenotype suggests a molecular genetic link between these two neurodevelopmental disorders.


Immunity | 2009

Cellular Inhibitors of Apoptosis cIAP1 and cIAP2 Are Required for Innate Immunity Signaling by the Pattern Recognition Receptors NOD1 and NOD2

Mathieu J.M. Bertrand; Karine Doiron; Katherine Labbé; Robert G. Korneluk; Philip A. Barker; Maya Saleh

Cellular inhibitor of apoptosis proteins (cIAPs) block apoptosis, but their physiological functions are still under investigation. Here, we report that cIAP1 and cIAP2 are E3 ubiquitin ligases that are required for receptor-interacting protein 2 (RIP2) ubiquitination and for nucleotide-binding and oligomerization (NOD) signaling. Macrophages derived from Birc2(-/-) or Birc3(-/-) mice, or colonocytes depleted of cIAP1 or cIAP2 by RNAi, were defective in NOD signaling and displayed sharp attenuation of cytokine and chemokine production. This blunted response was observed in vivo when Birc2(-/-) and Birc3(-/-) mice were challenged with NOD agonists. Defects in NOD2 signaling are associated with Crohns disease, and muramyl dipeptide (MDP) activation of NOD2 signaling protects mice from experimental colitis. Here, we show that administration of MDP protected wild-type but not Ripk2(-/-) or Birc3(-/-) mice from colitis, confirming the role of the cIAPs in NOD2 signaling in vivo. This discovery provides therapeutic opportunities in the treatment of NOD-dependent immunologic and inflammatory diseases.


The Journal of Neuroscience | 2009

Vasculature Guides Migrating Neuronal Precursors in the Adult Mammalian Forebrain via Brain-Derived Neurotrophic Factor Signaling

Marina Snapyan; Morgane Lemasson; Monika S. Brill; Mathieu Blais; Mireille Massouh; Jovica Ninkovic; Claude Gravel; François Berthod; Magdalena Götz; Philip A. Barker; André Parent; Armen Saghatelyan

Adult neuronal precursors retain the remarkable capacity to migrate long distances from the posterior (subventricular zone) to the most anterior [olfactory bulb (OB)] parts of the brain. The knowledge about the mechanisms that keep neuronal precursors in the migratory stream and organize this long-distance migration is incomplete. Here we show that blood vessels precisely outline the migratory stream for new neurons in the adult mammalian forebrain. Real-time video imaging of cell migration in the acute slices demonstrate that neuronal precursors are retained in the migratory stream and guided into the OB by blood vessels that serve as a physical substrate for migrating neuroblasts. Our data suggest that endothelial cells of blood vessels synthesize brain-derived neurotrophic factor (BDNF) that fosters neuronal migration via p75NTR expressed on neuroblasts. Interestingly, GABA released from neuroblasts induces Ca2+-dependent insertion of high-affinity TrkB receptors on the plasma membrane of astrocytes that trap extracellular BDNF. We hypothesize that this renders BDNF unavailable for p75NTR-expressing migrating cells and leads to their entrance into the stationary period. Our findings provide new insights into the functional organization of substrates that facilitate the long-distance journey of adult neuronal precursors.


The Journal of Neuroscience | 2009

Nuclear factor kB signaling regulates neuronal morphology and cocaine reward

Scott J. Russo; Matthew Wilkinson; Michelle S. Mazei-Robison; David M. Dietz; Ian Maze; Vaishnav Krishnan; William Renthal; Ami Graham; Shari G. Birnbaum; Thomas A. Green; Bruce Robison; Alan Lesselyong; Linda I. Perrotti; Carlos A. Bolaños; Arvind Kumar; Michael S. Clark; John F. Neumaier; Rachael L. Neve; Asha L. Bhakar; Philip A. Barker; Eric J. Nestler

Although chronic cocaine-induced changes in dendritic spines on nucleus accumbens (NAc) neurons have been correlated with behavioral sensitization, the molecular pathways governing these structural changes, and their resulting behavioral effects, are poorly understood. The transcription factor, nuclear factor κ B (NFκB), is rapidly activated by diverse stimuli and regulates expression of many genes known to maintain cell structure. Therefore, we evaluated the role of NFκB in regulating cocaine-induced dendritic spine changes on medium spiny neurons of the NAc and the rewarding effects of cocaine. We show that chronic cocaine induces NFκB-dependent transcription in the NAc of NFκB-Lac transgenic mice. This induction of NFκB activity is accompanied by increased expression of several NFκB genes, the promoters of which show chromatin modifications after chronic cocaine exposure consistent with their transcriptional activation. To study the functional significance of this induction, we used viral-mediated gene transfer to express either a constitutively active or dominant-negative mutant of Inhibitor of κ B kinase (IKKca or IKKdn), which normally activates NFκB signaling, in the NAc. We found that activation of NFκB by IKKca increases the number of dendritic spines on NAc neurons, whereas inhibition of NFκB by IKKdn decreases basal dendritic spine number and blocks the increase in dendritic spines after chronic cocaine. Moreover, inhibition of NFκB blocks the rewarding effects of cocaine and the ability of previous cocaine exposure to increase an animals preference for cocaine. Together, these studies establish a direct role for NFκB pathways in the NAc to regulate structural and behavioral plasticity to cocaine.


Journal of Biological Chemistry | 2001

The Atypical Protein Kinase C-interacting Protein p62 Is a Scaffold for NF-κB Activation by Nerve Growth Factor

Marie W. Wooten; M. Lamar Seibenhener; Vidya Mamidipudi; Maria T. Diaz-Meco; Philip A. Barker; Jorge Moscat

Nerve growth factor (NGF) binding to both p75 and TrkA neurotrophin receptors activates the transcription factor nuclear factor κB (NF-κB). Here we show that the atypical protein kinase C-interacting protein, p62, which binds TRAF6, selectively interacts with TrkA but not p75. In contrast, TRAF6 interacts with p75 but not TrkA. We demonstrate the formation of a TRAF6-p62 complex that serves as a bridge linking both p75 and TrkA signaling. Of functional relevance, transfection of antisense p62-enhanced p75-mediated cell death and diminished NGF-induced differentiation occur through a mechanism involving inhibition of IKK activity. These findings reveal a new function for p62 as a common platform for communication of both p75-TRAF6 and TrkA signals. Moreover, we demonstrated that p62 serves as a scaffold for activation of the NF-κB pathway, which mediates NGF survival and differentiation responses.


Neuron | 2006

Ligand-Dependent Cleavage of the P75 Neurotrophin Receptor Is Necessary for NRIF Nuclear Translocation and Apoptosis in Sympathetic Neurons

Rajappa S. Kenchappa; Niccolò Zampieri; Moses V. Chao; Philip A. Barker; Henry K. Teng; Barbara L. Hempstead; Bruce D. Carter

The p75 neurotrophin receptor regulates neuronal survival, promoting it in some contexts yet activating apoptosis in others. The mechanism by which the receptor elicits these differential effects is poorly understood. Here, we demonstrate that p75 is cleaved by gamma-secretase in sympathetic neurons, specifically in response to proapoptotic ligands. This cleavage resulted in ubiquitination and subsequent nuclear translocation of NRIF, a DNA binding protein essential for p75-mediated apoptosis. Inhibition of gamma-secretase or expression of a mutant p75 resistant to this protease prevented receptor proteolysis, blocked NRIF nuclear entry, and prevented apoptosis. In contrast, overexpression of the p75 ICD resulted in NRIF nuclear accumulation and apoptosis. The receptor proteolysis and NRIF nuclear localization were also observed in vivo during naturally occurring cell death in the superior cervical ganglia. These results indicate that p75-mediated apoptosis requires gamma-secretase dependent release of its ICD, which facilitates nuclear translocation of NRIF.

Collaboration


Dive into the Philip A. Barker's collaboration.

Top Co-Authors

Avatar

Asha L. Bhakar

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar

Kathleen M. Dickson

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar

Nicolas Unsain

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amir H. Salehi

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar

Claire Ceni

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar

Philippe Séguéla

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timothy E. Kennedy

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge