Philippe Revoy
University of Montpellier
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Philippe Revoy.
Archive | 1991
Alberto Medina; Philippe Revoy
Un groupe de Lie G admet une structure symplectique invariante s’il existe sur G une 2-forme differentielle fermee invariante a gauche dont le rang est egal a la dimension de G. Un tel groupe sera appele par abus de langage, symplectique et son algebre de Lie sera dite symplectique. Le principal resultat de ce travail est de fournir une classification des groupes symplectiques nilpotents par leurs algebres de Lie. L’idee centrale dans cette classification est la notion de double extension (section 2) d’une algebre symplectique: grosso modo en additionnant un plan symplectique a une algebre symplectique on obtient une algebre symplectique. Cette notion est l’analogue symplectique de la notion de double extension des algebres de Lie orthogonales, que nous avons introduite dans [Me-Re 1].Nous montrons que toute algebre symplectique nilpotente s’obtient par une suite de doubles extensions a partir de l’algebre reduite a zero (theoreme 2.5). Dire que le groupe de Lie symplectique (G,ω) est double extension du groupe (H, Ω) veut dire que ce dernier est une variete reduite de Marsden-Weinstein de (G,ω). Toute nilvariete symplectique etant quotient d’un groupe nilpotent symplectique par un sous-groupe discret co-compact, [Be-Go] la double extension permet d’obtenir toutes ces varietes.
Manuscripta Mathematica | 1985
Alberto Medina; Philippe Revoy
In this paper we study the geometry of oscillator groups: they are the only non commutative simply connected solvable Lie groups which have a biinvariant Lorentzian metric. We first study curvature and geodesics, and then give a full analysis of lattices - i.e. discrete co-compact subgroups - getting examples of compact Lorentzian homogeneous varieties.
Communications in Algebra | 1993
Alberto Medina; Philippe Revoy
We continue our study of orthogonal Lie algebras, i.e. Lie algebras which support an invariant scalar product. We first show that a Lie algebra has a non degenerate invariant bilinear form iff adjoint and coadjoint representations are isomorphic. We study the space of all invariant bilinear forms on an orthogonal algebra. In a second part we study orthogonal modules and give a complete description of the double extension process which allows to construct all orthogonal modules ; we give examples and raise the question of existence of non-isomorphic orthogonal structures on a given orthogonal Lie algebra.
Communications in Algebra | 2012
Jacques Helmstetter; Artibano Micali; Philippe Revoy
Meson algebras of order 2 have already drawn much attention, and their study has brought plenty of interesting knowledge. This fact motivated the definition and the study of meson algebras of greater order. Unfortunately, these algebras finally proved to be disappointing; probably there is almost nothing to add to the information given in the present article. Almost all meson algebras of order ≥3 are trivial, and the only two cases that give nontrivial algebras, are completely described here.
Annales Scientifiques De L Ecole Normale Superieure | 1985
Alberto Medina; Philippe Revoy
Proceedings of the Edinburgh Mathematical Society | 1986
Artibano Micali; Philippe Revoy
Linear & Multilinear Algebra | 1981
Philippe Revoy
Archive | 1993
Philippe Revoy
Advances in Applied Clifford Algebras | 2014
Philippe Revoy
Afrika Matematika | 2012
Jacques Helmstetter; Artibano Micali; Philippe Revoy