Philippe Rigault
Laval University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Philippe Rigault.
Journal of Biomedical Informatics | 2008
Franc ! ois Belleau; Marc-Alexandre Nolin; Nicole Tourigny; Philippe Rigault; Jean Morissette
Presently, there are numerous bioinformatics databases available on different websites. Although RDF was proposed as a standard format for the web, these databases are still available in various formats. With the increasing popularity of the semantic web technologies and the ever growing number of databases in bioinformatics, there is a pressing need to develop mashup systems to help the process of bioinformatics knowledge integration. Bio2RDF is such a system, built from rdfizer programs written in JSP, the Sesame open source triplestore technology and an OWL ontology. With Bio2RDF, documents from public bioinformatics databases such as Kegg, PDB, MGI, HGNC and several of NCBIs databases can now be made available in RDF format through a unique URL in the form of http://bio2rdf.org/namespace:id. The Bio2RDF project has successfully applied the semantic web technology to publicly available databases by creating a knowledge space of RDF documents linked together with normalized URIs and sharing a common ontology. Bio2RDF is based on a three-step approach to build mashups of bioinformatics data. The present article details this new approach and illustrates the building of a mashup used to explore the implication of four transcription factor genes in Parkinsons disease. The Bio2RDF repository can be queried at http://bio2rdf.org.
Nature | 2014
Alexander Andrew Myburg; Dario Grattapaglia; Gerald A. Tuskan; Uffe Hellsten; Richard D. Hayes; Jane Grimwood; Jerry Jenkins; Erika Lindquist; Hope Tice; Diane Bauer; David Goodstein; Inna Dubchak; Alexandre Poliakov; Eshchar Mizrachi; Anand Raj Kumar Kullan; Steven G. Hussey; Desre Pinard; Karen Van der Merwe; Pooja Singh; Ida Van Jaarsveld; Orzenil Bonfim Silva-Junior; Roberto C. Togawa; Marilia R. Pappas; Danielle A. Faria; Carolina Sansaloni; Cesar D. Petroli; Xiaohan Yang; Priya Ranjan; Timothy J. Tschaplinski; Chu-Yu Ye
Eucalypts are the world’s most widely planted hardwood trees. Their outstanding diversity, adaptability and growth have made them a global renewable resource of fibre and energy. We sequenced and assembled >94% of the 640-megabase genome of Eucalyptus grandis. Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes. Eucalyptus also shows the highest diversity of genes for specialized metabolites such as terpenes that act as chemical defence and provide unique pharmaceutical oils. Genome sequencing of the E. grandis sister species E. globulus and a set of inbred E. grandis tree genomes reveals dynamic genome evolution and hotspots of inbreeding depression. The E. grandis genome is the first reference for the eudicot order Myrtales and is placed here sister to the eurosids. This resource expands our understanding of the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.
Plant Physiology | 2011
Philippe Rigault; Brian Boyle; Pierre Lepage; Janice E. K. Cooke; Jean Bousquet; John MacKay
Several angiosperm plant genomes, including Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), poplar (Populus trichocarpa), and grapevine (Vitis vinifera), have been sequenced, but the lack of reference genomes in gymnosperm phyla reduces our understanding of plant evolution and restricts the potential impacts of genomics research. A gene catalog was developed for the conifer tree Picea glauca (white spruce) through large-scale expressed sequence tag sequencing and full-length cDNA sequencing to facilitate genome characterizations, comparative genomics, and gene mapping. The resource incorporates new and publicly available sequences into 27,720 cDNA clusters, 23,589 of which are represented by full-length insert cDNAs. Expressed sequence tags, mate-pair cDNA clone analysis, and custom sequencing were integrated through an iterative process to improve the accuracy of clustering outcomes. The entire catalog spans 30 Mb of unique transcribed sequence. We estimated that the P. glauca nuclear genome contains up to 32,520 transcribed genes owing to incomplete, partially sequenced, and unsampled transcripts and that its transcriptome could span up to 47 Mb. These estimates are in the same range as the Arabidopsis and rice transcriptomes. Next-generation methods confirmed and enhanced the catalog by providing deeper coverage for rare transcripts, by extending many incomplete clusters, and by augmenting the overall transcriptome coverage to 38 Mb of unique sequence. Genomic sample sequencing at 8.5% of the 19.8-Gb P. glauca genome identified 1,495 clusters representing highly repeated sequences among the cDNA clusters. With a conifer transcriptome in full view, functional and protein domain annotations clearly highlighted the divergences between conifers and angiosperms, likely reflecting their respective evolutionary paths.
Genome Biology | 2008
Jean-Michel Ubeda; Danielle Légaré; Frédéric Raymond; Amin Ahmed Ouameur; Sébastien Boisvert; Philippe Rigault; Jacques Corbeil; Michel J. Tremblay; Martin Olivier; Barbara Papadopoulou; Marc Ouellette
BackgroundDrug resistance can be complex, and several mutations responsible for it can co-exist in a resistant cell. Transcriptional profiling is ideally suited for studying complex resistance genotypes and has the potential to lead to novel discoveries. We generated full genome 70-mer oligonucleotide microarrays for all protein coding genes of the human protozoan parasites Leishmania major and Leishmania infantum. These arrays were used to monitor gene expression in methotrexate resistant parasites.ResultsLeishmania is a eukaryotic organism with minimal control at the level of transcription initiation and few genes were differentially expressed without concomitant changes in DNA copy number. One exception was found in Leishmania major, where the expression of whole chromosomes was down-regulated. The microarrays highlighted several mechanisms by which the copy number of genes involved in resistance was altered; these include gene deletion, formation of extrachromosomal circular or linear amplicons, and the presence of supernumerary chromosomes. In the case of gene deletion or gene amplification, the rearrangements have occurred at the sites of repeated (direct or inverted) sequences. These repeats appear highly conserved in both species to facilitate the amplification of key genes during environmental changes. When direct or inverted repeats are absent in the vicinity of a gene conferring a selective advantage, Leishmania will resort to supernumerary chromosomes to increase the levels of a gene product.ConclusionAneuploidy has been suggested as an important cause of drug resistance in several organisms and additional studies should reveal the potential importance of this phenomenon in drug resistance in Leishmania.
Genetics | 2011
Jean Beaulieu; Trevor Doerksen; Brian Boyle; Sébastien Clément; Marie Deslauriers; Stéphanie Beauseigle; Sylvie Blais; Pier-Luc Poulin; Patrick Lenz; Sébastien Caron; Philippe Rigault; Paul Bicho; Jean Bousquet; John MacKay
Marker-assisted selection holds promise for highly influencing tree breeding, especially for wood traits, by considerably reducing breeding cycles and increasing selection accuracy. In this study, we used a candidate gene approach to test for associations between 944 single-nucleotide polymorphism markers from 549 candidate genes and 25 wood quality traits in white spruce. A mixed-linear model approach, including a weak but nonsignificant population structure, was implemented for each marker–trait combination. Relatedness among individuals was controlled using a kinship matrix estimated either from the known half-sib structure or from the markers. Both additive and dominance effect models were tested. Between 8 and 21 single-nucleotide polymorphisms (SNPs) were found to be significantly associated (P ≤ 0.01) with each of earlywood, latewood, or total wood traits. After controlling for multiple testing (Q ≤ 0.10), 13 SNPs were still significant across as many genes belonging to different families, each accounting for between 3 and 5% of the phenotypic variance in 10 wood characters. Transcript accumulation was determined for genes containing SNPs associated with these traits. Significantly different transcript levels (P ≤ 0.05) were found among the SNP genotypes of a 1-aminocyclopropane-1-carboxylate oxidase, a β-tonoplast intrinsic protein, and a long-chain acyl-CoA synthetase 9. These results should contribute toward the development of efficient marker-assisted selection in an economically important tree species.
BMC Biology | 2012
Nathalie Pavy; Betty Pelgas; Jérôme Laroche; Philippe Rigault; Nathalie Isabel; Jean Bousquet
BackgroundSeed plants are composed of angiosperms and gymnosperms, which diverged from each other around 300 million years ago. While much light has been shed on the mechanisms and rate of genome evolution in flowering plants, such knowledge remains conspicuously meagre for the gymnosperms. Conifers are key representatives of gymnosperms and the sheer size of their genomes represents a significant challenge for characterization, sequencing and assembling.ResultsTo gain insight into the macro-organisation and long-term evolution of the conifer genome, we developed a genetic map involving 1,801 spruce genes. We designed a statistical approach based on kernel density estimation to analyse gene density and identified seven gene-rich isochors. Groups of co-localizing genes were also found that were transcriptionally co-regulated, indicative of functional clusters. Phylogenetic analyses of 157 gene families for which at least two duplicates were mapped on the spruce genome indicated that ancient gene duplicates shared by angiosperms and gymnosperms outnumbered conifer-specific duplicates by a ratio of eight to one. Ancient duplicates were much more translocated within and among spruce chromosomes than conifer-specific duplicates, which were mostly organised in tandem arrays. Both high synteny and collinearity were also observed between the genomes of spruce and pine, two conifers that diverged more than 100 million years ago.ConclusionsTaken together, these results indicate that much genomic evolution has occurred in the seed plant lineage before the split between gymnosperms and angiosperms, and that the pace of evolution of the genome macro-structure has been much slower in the gymnosperm lineage leading to extent conifers than that seen for the same period of time in flowering plants. This trend is largely congruent with the contrasted rates of diversification and morphological evolution observed between these two groups of seed plants.
Molecular Ecology Resources | 2013
Nathalie Pavy; Philippe Rigault; Sylvie Blais; Astrid Deschênes; Brian Boyle; Betty Pelgas; Marie Deslauriers; Sébastien Clément; Patricia Lavigne; Manuel Lamothe; Janice E. K. Cooke; Juan P. Jaramillo-Correa; Jean Beaulieu; Nathalie Isabel; John MacKay; Jean Bousquet
High‐density SNP genotyping arrays can be designed for any species given sufficient sequence information of high quality. Two high‐density SNP arrays relying on the Infinium iSelect technology (Illumina) were designed for use in the conifer white spruce (Picea glauca). One array contained 7338 segregating SNPs representative of 2814 genes of various molecular functional classes for main uses in genetic association and population genetics studies. The other one contained 9559 segregating SNPs representative of 9543 genes for main uses in population genetics, linkage mapping of the genome and genomic prediction. The SNPs assayed were discovered from various sources of gene resequencing data. SNPs predicted from high‐quality sequences derived from genomic DNA reached a genotyping success rate of 64.7%. Nonsingleton in silico SNPs (i.e. a sequence polymorphism present in at least two reads) predicted from expressed sequenced tags obtained with the Roche 454 technology and Illumina GAII analyser resulted in a similar genotyping success rate of 71.6% when the deepest alignment was used and the most favourable SNP probe per gene was selected. A variable proportion of these SNPs was shared by other nordic and subtropical spruce species from North America and Europe. The number of shared SNPs was inversely proportional to phylogenetic divergence and standing genetic variation in the recipient species, but positively related to allele frequency in P. glauca natural populations. These validated SNP resources should open up new avenues for population genetics and comparative genetic mapping at a genomic scale in spruce species.
Genome Biology | 2015
Jose M. Barrero; Colin Cavanagh; Klara L. Verbyla; Josquin Tibbits; Arunas P. Verbyla; B. Emma Huang; Garry M. Rosewarne; Stuart Stephen; Penghao Wang; Alex Whan; Philippe Rigault; Matthew J. Hayden; Frank Gubler
BackgroundNext-generation sequencing technologies provide new opportunities to identify the genetic components responsible for trait variation. However, in species with large polyploid genomes, such as bread wheat, the ability to rapidly identify genes underlying quantitative trait loci (QTL) remains non-trivial. To overcome this, we introduce a novel pipeline that analyses, by RNA-sequencing, multiple near-isogenic lines segregating for a targeted QTL.ResultsWe use this approach to characterize a major and widely utilized seed dormancy QTL located on chromosome 4AL. It exploits the power and mapping resolution afforded by large multi-parent mapping populations, whilst reducing complexity by using multi-allelic contrasts at the targeted QTL region. Our approach identifies two adjacent candidate genes within the QTL region belonging to the ABA-induced Wheat Plasma Membrane 19 family. One of them, PM19-A1, is highly expressed during grain maturation in dormant genotypes. The second, PM19-A2, shows changes in sequence causing several amino acid alterations between dormant and non-dormant genotypes. We confirm that PM19 genes are positive regulators of seed dormancy.ConclusionsThe efficient identification of these strong candidates demonstrates the utility of our transcriptomic pipeline for rapid QTL to gene mapping. By using this approach we are able to provide a comprehensive genetic analysis of the major source of grain dormancy in wheat. Further analysis across a diverse panel of bread and durum wheats indicates that this important dormancy QTL predates hexaploid wheat. The use of these genes by wheat breeders could assist in the elimination of pre-harvest sprouting in wheat.
BMC Genomics | 2012
Elie Raherison; Philippe Rigault; Sébastien Caron; Pier-Luc Poulin; Brian Boyle; Jukka-Pekka Verta; Claude Bomal; Jörg Bohlmann; John MacKay
BackgroundConifers have very large genomes (13 to 30 Gigabases) that are mostly uncharacterized although extensive cDNA resources have recently become available. This report presents a global overview of transcriptome variation in a conifer tree and documents conservation and diversity of gene expression patterns among major vegetative tissues.ResultsAn oligonucleotide microarray was developed from Picea glauca and P. sitchensis cDNA datasets. It represents 23,853 unique genes and was shown to be suitable for transcriptome profiling in several species. A comparison of secondary xylem and phelloderm tissues showed that preferential expression in these vascular tissues was highly conserved among Picea spp. RNA-Sequencing strongly confirmed tissue preferential expression and provided a robust validation of the microarray design. A small database of transcription profiles called PiceaGenExpress was developed from over 150 hybridizations spanning eight major tissue types. In total, transcripts were detected for 92% of the genes on the microarray, in at least one tissue. Non-annotated genes were predominantly expressed at low levels in fewer tissues than genes of known or predicted function. Diversity of expression within gene families may be rapidly assessed from PiceaGenExpress. In conifer trees, dehydrins and late embryogenesis abundant (LEA) osmotic regulation proteins occur in large gene families compared to angiosperms. Strong contrasts and low diversity was observed in the dehydrin family, while diverse patterns suggested a greater degree of diversification among LEAs.ConclusionTogether, the oligonucleotide microarray and the PiceaGenExpress database represent the first resource of this kind for gymnosperm plants. The spruce transcriptome analysis reported here is expected to accelerate genetic studies in the large and important group comprised of conifer trees.
BMC Plant Biology | 2014
Juliana Stival Sena; Brian Boyle; Philippe Rigault; Inanc Birol; Andrea Zuccolo; Kermit Ritland; Carol Ritland; Joerg Bohlmann; Steven J.M. Jones; Jean Bousquet; John MacKay
BackgroundA positive relationship between genome size and intron length is observed across eukaryotes including Angiosperms plants, indicating a co-evolution of genome size and gene structure. Conifers have very large genomes and longer introns on average than most plants, but impacts of their large genome and longer introns on gene structure has not be described.ResultsGene structure was analyzed for 35 genes of Picea glauca obtained from BAC sequencing and genome assembly, including comparisons with A. thaliana, P. trichocarpa and Z. mays. We aimed to develop an understanding of impact of long introns on the structure of individual genes. The number and length of exons was well conserved among the species compared but on average, P. glauca introns were longer and genes had four times more intronic sequence than Arabidopsis, and 2 times more than poplar and maize. However, pairwise comparisons of individual genes gave variable results and not all contrasts were statistically significant. Genes generally accumulated one or a few longer introns in species with larger genomes but the position of long introns was variable between plant lineages. In P. glauca, highly expressed genes generally had more intronic sequence than tissue preferential genes. Comparisons with the Pinus taeda BACs and genome scaffolds showed a high conservation for position of long introns and for sequence of short introns. A survey of 1836 P. glauca genes obtained by sequence capture mostly containing introns <1 Kbp showed that repeated sequences were 10× more abundant in introns than in exons.ConclusionConifers have large amounts of intronic sequence per gene for seed plants due to the presence of few long introns and repetitive element sequences are ubiquitous in their introns. Results indicate a complex landscape of intron sizes and distribution across taxa and between genes with different expression profiles.