Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philippe Riou is active.

Publication


Featured researches published by Philippe Riou.


Neuron | 2011

Proneural Transcription Factors Regulate Different Steps of Cortical Neuron Migration through Rnd-Mediated Inhibition of RhoA Signaling

Emilie Pacary; Julian Heng; Roberta Azzarelli; Philippe Riou; Diogo S. Castro; Melanie Lebel-Potter; Carlos Parras; Donald M. Bell; Anne J. Ridley; Madeline Parsons; François Guillemot

Summary Little is known of the intracellular machinery that controls the motility of newborn neurons. We have previously shown that the proneural protein Neurog2 promotes the migration of nascent cortical neurons by inducing the expression of the atypical Rho GTPase Rnd2. Here, we show that another proneural factor, Ascl1, promotes neuronal migration in the cortex through direct regulation of a second Rnd family member, Rnd3. Both Rnd2 and Rnd3 promote neuronal migration by inhibiting RhoA signaling, but they control distinct steps of the migratory process, multipolar to bipolar transition in the intermediate zone and locomotion in the cortical plate, respectively. Interestingly, these divergent functions directly result from the distinct subcellular distributions of the two Rnd proteins. Because Rnd proteins also regulate progenitor divisions and neurite outgrowth, we propose that proneural factors, through spatiotemporal regulation of Rnd proteins, integrate the process of neuronal migration with other events in the neurogenic program.


Journal of Cell Biology | 2012

Cdc42 promotes transendothelial migration of cancer cells through β1 integrin

Nicolas Reymond; Jae Hong Im; Ritu Garg; Francisco M. Vega; Bárbara Borda d’Água; Philippe Riou; Susan Cox; Ferran Valderrama; Ruth J. Muschel; Anne J. Ridley

Cdc42 induces β1 integrin expression at the transcriptional level via the transcription factor SRF to promote cancer cell interaction with endothelial cells.


BioEssays | 2010

Rnd proteins: Multifunctional regulators of the cytoskeleton and cell cycle progression

Philippe Riou; Priam Villalonga; Anne J. Ridley

Rnd3/RhoE has two distinct functions, regulating the actin cytoskeleton and cell proliferation. This might explain why its expression is often altered in cancer and by multiple stimuli during development and disease. Rnd3 together with its relatives Rnd1 and Rnd2 are atypical members of the Rho GTPase family in that they do not hydrolyse GTP. Rnd3 and Rnd1 both antagonise RhoA/ROCK‐mediated actomyosin contractility, thereby regulating cell migration, smooth muscle contractility and neurite extension. In addition, Rnd3 has been shown to have a separate role in inhibiting cell cycle progression by reducing translation of cell cycle regulators, including cyclin D1 and Myc. We propose that Rnd3 could act as a tumour suppressor to limit proliferation, but when mutations bypass this activity of Rnd3, it can promote cancer invasion through its effects in the actin cytoskeleton.


Cell | 2013

14-3-3 Proteins Interact with a Hybrid Prenyl-Phosphorylation Motif to Inhibit G Proteins

Philippe Riou; Svend Kjær; Ritu Garg; Andrew Purkiss; Roger George; Robert J. Cain; Ganka Bineva; Nicolas Reymond; Brad McColl; Andrew J. Thompson; Nicola O’Reilly; Neil Q. McDonald; Peter J. Parker; Anne J. Ridley

Signaling through G proteins normally involves conformational switching between GTP- and GDP-bound states. Several Rho GTPases are also regulated by RhoGDI binding and sequestering in the cytosol. Rnd proteins are atypical constitutively GTP-bound Rho proteins, whose regulation remains elusive. Here, we report a high-affinity 14-3-3-binding site at the C terminus of Rnd3 consisting of both the Cys241-farnesyl moiety and a Rho-associated coiled coil containing protein kinase (ROCK)-dependent Ser240 phosphorylation site. 14-3-3 binding to Rnd3 also involves phosphorylation of Ser218 by ROCK and/or Ser210 by protein kinase C (PKC). The crystal structure of a phosphorylated, farnesylated Rnd3 peptide with 14-3-3 reveals a hydrophobic groove in 14-3-3 proteins accommodating the farnesyl moiety. Functionally, 14-3-3 inhibits Rnd3-induced cell rounding by translocating it from the plasma membrane to the cytosol. Rnd1, Rnd2, and geranylgeranylated Rap1A interact similarly with 14-3-3. In contrast to the canonical GTP/GDP switch that regulates most Ras superfamily members, our results reveal an unprecedented mechanism for G protein inhibition by 14-3-3 proteins.Summary Signaling through G proteins normally involves conformational switching between GTP- and GDP-bound states. Several Rho GTPases are also regulated by RhoGDI binding and sequestering in the cytosol. Rnd proteins are atypical constitutively GTP-bound Rho proteins, whose regulation remains elusive. Here, we report a high-affinity 14-3-3-binding site at the C terminus of Rnd3 consisting of both the Cys241-farnesyl moiety and a Rho-associated coiled coil containing protein kinase (ROCK)-dependent Ser240 phosphorylation site. 14-3-3 binding to Rnd3 also involves phosphorylation of Ser218 by ROCK and/or Ser210 by protein kinase C (PKC). The crystal structure of a phosphorylated, farnesylated Rnd3 peptide with 14-3-3 reveals a hydrophobic groove in 14-3-3 proteins accommodating the farnesyl moiety. Functionally, 14-3-3 inhibits Rnd3-induced cell rounding by translocating it from the plasma membrane to the cytosol. Rnd1, Rnd2, and geranylgeranylated Rap1A interact similarly with 14-3-3. In contrast to the canonical GTP/GDP switch that regulates most Ras superfamily members, our results reveal an unprecedented mechanism for G protein inhibition by 14-3-3 proteins.


Nature Communications | 2014

An antagonistic interaction between PlexinB2 and Rnd3 controls RhoA activity and cortical neuron migration

Roberta Azzarelli; Emilie Pacary; Ritu Garg; Patricia P. Garcez; Debbie L.C. van den Berg; Philippe Riou; Anne J. Ridley; Roland H. Friedel; Madeline Parsons; François Guillemot

A transcriptional programme initiated by the proneural factors Neurog2 and Ascl1 controls successive steps of neurogenesis in the embryonic cerebral cortex. Previous work has shown that proneural factors also confer a migratory behaviour to cortical neurons by inducing the expression of the small GTP-binding proteins such as Rnd2 and Rnd3. However, the directionality of radial migration suggests that migrating neurons also respond to extracellular signal-regulated pathways. Here we show that the Plexin B2 receptor interacts physically and functionally with Rnd3 and stimulates RhoA activity in migrating cortical neurons. Plexin B2 competes with p190RhoGAP for binding to Rnd3, thus blocking the Rnd3-mediated inhibition of RhoA and also recruits RhoGEFs to directly stimulate RhoA activity. Thus, an interaction between the cell-extrinsic Plexin signalling pathway and the cell-intrinsic Ascl1-Rnd3 pathway determines the level of RhoA activity appropriate for cortical neuron migration.


Biochemical Pharmacology | 2014

Atypical protein kinase Cι as a human oncogene and therapeutic target.

Peter J. Parker; Verline Justilien; Philippe Riou; Mark Linch; Alan P. Fields

Protein kinase inhibitors represent a major class of targeted therapeutics that has made a positive impact on treatment of cancer and other disease indications. Among the promising kinase targets for further therapeutic development are members of the Protein Kinase C (PKC) family. The PKCs are central components of many signaling pathways that regulate diverse cellular functions including proliferation, cell cycle, differentiation, survival, cell migration, and polarity. Genetic manipulation of individual PKC isozymes has demonstrated that they often fulfill distinct, nonredundant cellular functions. Participation of PKC members in different intracellular signaling pathways reflects responses to varying extracellular stimuli, intracellular localization, tissue distribution, phosphorylation status, and intermolecular interactions. PKC activity, localization, phosphorylation, and/or expression are often altered in human tumors, and PKC isozymes have been implicated in various aspects of transformation, including uncontrolled proliferation, migration, invasion, metastasis, angiogenesis, and resistance to apoptosis. Despite the strong relationship between PKC isozymes and cancer, to date only atypical PKCiota has been shown to function as a bona fide oncogene, and as such is a particularly attractive therapeutic target for cancer treatment. In this review, we discuss the role of PKCiota in transformation and describe mechanism-based approaches to therapeutically target oncogenic PKCiota signaling in cancer.


Methods of Molecular Biology | 2012

Rho GTPases and Cancer Cell Transendothelial Migration

Nicolas Reymond; Philippe Riou; Anne J. Ridley

Small Rho GTPases are major regulators of actin cytoskeleton dynamics and influence cell shape and migration. The expression of several Rho GTPases is often up-regulated in tumors and this frequently correlates with a poor prognosis for patients. Migration of cancer cells through endothelial cells that line the blood vessels, called transendothelial migration or extravasation, is a critical step during the metastasis process. The use of siRNA technology to target specifically each Rho family member coupled with imaging techniques allows the roles of individual Rho GTPases to be investigated. In this chapter we describe methods to assess how Rho GTPases affect the different steps of cancer cell transendothelial cell migration in vitro.


Biology Open | 2013

Rnd3 induces stress fibres in endothelial cells through RhoB

Undine Gottesbühren; Ritu Garg; Philippe Riou; Brad McColl; Daniel Brayson; Anne J. Ridley

Summary Rnd proteins are atypical Rho family proteins that do not hydrolyse GTP and are instead regulated by expression levels and post-translational modifications. Rnd1 and Rnd3/RhoE induce loss of actin stress fibres and cell rounding in multiple cell types, whereas responses to Rnd2 are more variable. Here we report the responses of endothelial cells to Rnd proteins. Rnd3 induces a very transient decrease in stress fibres but subsequently stimulates a strong increase in stress fibres, in contrast to the reduction observed in other cell types. Rnd2 also increases stress fibres whereas Rnd1 induces a loss of stress fibres and weakening of cell–cell junctions. Rnd3 does not act through any of its known signalling partners and does not need to associate with membranes to increase stress fibres. Instead, it acts by increasing RhoB expression, which is then required for Rnd3-induced stress fibre assembly. Rnd2 also increases RhoB levels. These data indicate that the cytoskeletal response to Rnd3 expression is dependent on cell type and context, and identify regulation of RhoB as a new mechanism for Rnd proteins to affect the actin cytoskeleton.


Developmental Cell | 2016

aPKC Inhibition by Par3 CR3 Flanking Regions Controls Substrate Access and Underpins Apical-Junctional Polarization.

Erika Soriano; Marina E. Ivanova; Georgina Fletcher; Philippe Riou; Philip P. Knowles; Karin Barnouin; Andrew Purkiss; Brenda Kostelecky; Peter Saiu; Mark Linch; Ahmed Elbediwy; Svend Kjær; Nicola O’Reilly; Ambrosius P. Snijders; Peter J. Parker; Barry J. Thompson; Neil Q. McDonald

Summary Atypical protein kinase C (aPKC) is a key apical-basal polarity determinant and Par complex component. It is recruited by Par3/Baz (Bazooka in Drosophila) into epithelial apical domains through high-affinity interaction. Paradoxically, aPKC also phosphorylates Par3/Baz, provoking its relocalization to adherens junctions (AJs). We show that Par3 conserved region 3 (CR3) forms a tight inhibitory complex with a primed aPKC kinase domain, blocking substrate access. A CR3 motif flanking its PKC consensus site disrupts the aPKC kinase N lobe, separating P-loop/αB/αC contacts. A second CR3 motif provides a high-affinity anchor. Mutation of either motif switches CR3 to an efficient in vitro substrate by exposing its phospho-acceptor site. In vivo, mutation of either CR3 motif alters Par3/Baz localization from apical to AJs. Our results reveal how Par3/Baz CR3 can antagonize aPKC in stable apical Par complexes and suggests that modulation of CR3 inhibitory arms or opposing aPKC pockets would perturb the interaction, promoting Par3/Baz phosphorylation.


Carcinogenesis | 2014

Regulation of polarized morphogenesis by protein kinase C iota in oncogenic epithelial spheroids

Mark Linch; Marta Sanz-Garcia; Carine Rossé; Philippe Riou; Nick Peel; Chris D. Madsen; Erik Sahai; Julian Downward; Asim Khwaja; Christian Dillon; Jon Roffey; Angus J.M. Cameron; Peter J. Parker

Protein kinase C iota (PKCι), a serine/threonine kinase required for cell polarity, proliferation and migration, is commonly up- or downregulated in cancer. PKCι is a human oncogene but whether this is related to its role in cell polarity and what repertoire of oncogenes acts in concert with PKCι is not known. We developed a panel of candidate oncogene expressing Madin-Darby canine kidney (MDCK) cells and demonstrated that H-Ras, ErbB2 and phosphatidylinositol 3-kinase transformation led to non-polar spheroid morphogenesis (dysplasia), whereas MDCK spheroids expressing c-Raf or v-Src were largely polarized. We show that small interfering RNA (siRNA)-targeting PKCι decreased the size of all spheroids tested and partially reversed the aberrant polarity phenotype in H-Ras and ErbB2 spheroids only. This indicates distinct requirements for PKCι and moreover that different thresholds of PKCι activity are required for these phenotypes. By manipulating PKCι function using mutant constructs, siRNA depletion or chemical inhibition, we have demonstrated that PKCι is required for polarization of parental MDCK epithelial cysts in a 3D matrix and that there is a threshold of PKCι activity above and below which, disorganized epithelial morphogenesis results. Furthermore, treatment with a novel PKCι inhibitor, CRT0066854, was able to restore polarized morphogenesis in the dysplastic H-Ras spheroids. These results show that tightly regulated PKCι is required for normal-polarized morphogenesis in mammalian cells and that H-Ras and ErbB2 cooperate with PKCι for loss of polarization and dysplasia. The identification of a PKCι inhibitor that can restore polarized morphogenesis has implications for the treatment of Ras and ErbB2 driven malignancies.

Collaboration


Dive into the Philippe Riou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Linch

The Royal Marsden NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jon Roffey

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Svend Kjær

Francis Crick Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge