Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Phillip C. Chamberlin is active.

Publication


Featured researches published by Phillip C. Chamberlin.


The Astrophysical Journal | 2012

Global Energetics of Thirty-Eight Large Solar Eruptive Events

A. G. Emslie; Brian R. Dennis; Albert Y. Shih; Phillip C. Chamberlin; R. A. Mewaldt; Christopher Moore; G. H. Share; Angelos Vourlidas; B. T. Welsch

We have evaluated the energetics of 38 solar eruptive events observed by a variety of spacecraft instruments between 2002 February and 2006 December, as accurately as the observations allow. The measured energetic components include: (1) the radiated energy in the Geostationary Operational Environmental Satellite 1-8 A band, (2) the total energy radiated from the soft X-ray (SXR) emitting plasma, (3) the peak energy in the SXR-emitting plasma, (4) the bolometric radiated energy over the full duration of the event, (5) the energy in flare-accelerated electrons above 20 keV and in flare-accelerated ions above 1 MeV, (6) the kinetic and potential energies of the coronal mass ejection (CME), (7) the energy in solar energetic particles (SEPs) observed in interplanetary space, and (8) the amount of free (non-potential) magnetic energy estimated to be available in the pertinent active region. Major conclusions include: (1) the energy radiated by the SXR-emitting plasma exceeds, by about half an order of magnitude, the peak energy content of the thermal plasma that produces this radiation; (2) the energy content in flare-accelerated electrons and ions is sufficient to supply the bolometric energy radiated across all wavelengths throughout the event; (3) the energy contents of flare-accelerated electrons and ions are comparable; (4) the energy in SEPs is typically a few percent of the CME kinetic energy (measured in the rest frame of the solar wind); and (5) the available magnetic energy is sufficient to power the CME, the flare-accelerated particles, and the hot thermal plasma.


Space Weather-the International Journal of Research and Applications | 2008

Flare Irradiance Spectral Model (FISM): Flare component algorithms and results

Phillip C. Chamberlin; Thomas N. Woods; Francis G. Eparvier

[1] The Flare Irradiance Spectral Model (FISM) is an empirical model developed for space weather applications that estimates the solar irradiance at wavelengths from 0.1 to 190 nm at 1 nm resolution with a time cadence of 60 s. This is a high enough temporal resolution to model variations due to solar flares, where few accurate measurements at these wavelengths exist, as well as the solar cycle and solar rotation variations. The FISM modeling of the daily component variations, including variations from the solar cycle and solar rotation, was the topic of the first FISM paper (Chamberlin et al., 2007). The modeling of the FISM flare component that includes the solar irradiance variations from both the impulsive and gradual phases of solar flares is the topic of this paper. The flare component algorithms and results are discussed, and comparisons show that FISM estimates agree within the stated uncertainties with measurements of the solar vacuum ultraviolet (VUV; 0.1--200 nm) irradiance. Results from FISM show that the relative change of the solar irradiance during flares for some wavelengths can exceed those of the solar cycle relative changes, ranging from factors of 60 times the quiet Sun irradiance during the gradual phase for emissions originating in the solar corona to factors of 10 in the transition region emissions during the flare’s impulsive phase. FISM fully quantifies, on all timescales, the changes in the solar VUV irradiance directly affecting satellite drag, radio communications, as well as the accuracy in the Global Positioning System (GPS).


Science | 2015

MAVEN observations of the response of Mars to an interplanetary coronal mass ejection

Bruce M. Jakosky; Joseph M. Grebowsky; J. G. Luhmann; J. E. P. Connerney; F. G. Eparvier; R. E. Ergun; J. S. Halekas; D. Larson; P. Mahaffy; J. P. McFadden; D. F. Mitchell; Nicholas M. Schneider; Richard W. Zurek; S. W. Bougher; D. A. Brain; Y. J. Ma; C. Mazelle; L. Andersson; D. J. Andrews; D. Baird; D. N. Baker; J. M. Bell; Mehdi Benna; M. S. Chaffin; Phillip C. Chamberlin; Y.-Y. Chaufray; John Clarke; Glyn Collinson; Michael R. Combi; Frank Judson Crary

Coupling between the lower and upper atmosphere, combined with loss of gas from the upper atmosphere to space, likely contributed to the thin, cold, dry atmosphere of modern Mars. To help understand ongoing ion loss to space, the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft made comprehensive measurements of the Mars upper atmosphere, ionosphere, and interactions with the Sun and solar wind during an interplanetary coronal mass ejection impact in March 2015. Responses include changes in the bow shock and magnetosheath, formation of widespread diffuse aurora, and enhancement of pick-up ions. Observations and models both show an enhancement in escape rate of ions to space during the event. Ion loss during solar events early in Mars history may have been a major contributor to the long-term evolution of the Mars atmosphere.


Science | 2015

Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability

S. W. Bougher; Bruce M. Jakosky; J. S. Halekas; Joseph M. Grebowsky; J. G. Luhmann; P. Mahaffy; J. E. P. Connerney; F. G. Eparvier; R. E. Ergun; D. Larson; J. P. McFadden; D. L. Mitchell; Nicholas M. Schneider; Richard W. Zurek; C. Mazelle; L. Andersson; D. J. Andrews; D. Baird; D. N. Baker; J. M. Bell; Mehdi Benna; D. A. Brain; M. S. Chaffin; Phillip C. Chamberlin; Y.-Y. Chaufray; John Clarke; Glyn Collinson; Michael R. Combi; Frank Judson Crary; T. E. Cravens

The Mars Atmosphere and Volatile Evolution (MAVEN) mission, during the second of its Deep Dip campaigns, made comprehensive measurements of martian thermosphere and ionosphere composition, structure, and variability at altitudes down to ~130 kilometers in the subsolar region. This altitude range contains the diffusively separated upper atmosphere just above the well-mixed atmosphere, the layer of peak extreme ultraviolet heating and primary reservoir for atmospheric escape. In situ measurements of the upper atmosphere reveal previously unmeasured populations of neutral and charged particles, the homopause altitude at approximately 130 kilometers, and an unexpected level of variability both on an orbit-to-orbit basis and within individual orbits. These observations help constrain volatile escape processes controlled by thermosphere and ionosphere structure and variability.


Solar Physics | 2013

On-Orbit Degradation of Solar Instruments

A. BenMoussa; S. Gissot; U. Schühle; G. Del Zanna; F. Auchère; Sabri Mekaoui; Andrew Jones; D. Walton; C. J. Eyles; Gérard Thuillier; Daniel B. Seaton; Ingolf E. Dammasch; Gaël Cessateur; Mustapha Meftah; V. Andretta; David Berghmans; Danielle Bewsher; D. Bolsée; L. Bradley; Daniel Stephen Brown; Phillip C. Chamberlin; Steven Dewitte; Leonid V. Didkovsky; Marie Dominique; F. G. Eparvier; Thomas Foujols; Didier Gillotay; B. Giordanengo; Jean-Philippe Halain; R. A. Hock

We present the lessons learned about the degradation observed in several space solar missions, based on contributions at the Workshop about On-Orbit Degradation of Solar and Space Weather Instruments that took place at the Solar Terrestrial Centre of Excellence (Royal Observatory of Belgium) in Brussels on 3 May 2012. The aim of this workshop was to open discussions related to the degradation observed in Sun-observing instruments exposed to the effects of the space environment. This article summarizes the various lessons learned and offers recommendations to reduce or correct expected degradation with the goal of increasing the useful lifespan of future and ongoing space missions.


Geophysical Research Letters | 2015

MAVEN IUVS observation of the hot oxygen corona at Mars

Justin Deighan; M. S. Chaffin; Jean-Yves Chaufray; A. I. F. Stewart; Nicholas M. Schneider; S. K. Jain; Arnaud Stiepen; M. Crismani; William E. McClintock; John Clarke; Gregory M. Holsclaw; Franck Montmessin; F. G. Eparvier; E. M. B. Thiemann; Phillip C. Chamberlin; Bruce M. Jakosky

Observation of the hot oxygen corona at Mars has been an elusive measurement in planetary science. Characterizing this component of the planets exosphere provides insight into the processes driving loss of oxygen at the current time, which informs understanding of the planets climatic evolution. The Mars Atmosphere and Volatile EvolutioN (MAVEN) Imaging Ultraviolet Spectrograph (IUVS) instrument is now regularly collecting altitude profiles of the hot oxygen corona as part of its investigation of atmospheric escape from Mars. Observations obtained thus far have been examined and found to display the expected gross structure and variability with EUV forcing anticipated by theory. The quality and quantity of the data set provides valuable constraints for the coronal modeling community.


Geophysical Research Letters | 2015

Retrieval of CO2 and N2 in the Martian thermosphere using dayglow observations by IUVS on MAVEN

J. S. Evans; Michael H. Stevens; Jerry Lumpe; Nicholas M. Schneider; A. I. F. Stewart; Justin Deighan; S. K. Jain; M. S. Chaffin; M. Crismani; Arnaud Stiepen; William E. McClintock; Gregory M. Holsclaw; Franck Lefèvre; D. Y. Lo; John Clarke; F. G. Eparvier; E. M. B. Thiemann; Phillip C. Chamberlin; S. W. Bougher; J. M. Bell; Bruce M. Jakosky

We present direct number density retrievals of carbon dioxide (CO2) and molecular nitrogen (N2) for the upper atmosphere of Mars using limb scan observations during October and November 2014 by the Imaging Ultraviolet Spectrograph on board NASAs Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. We use retrieved CO2 densities to derive temperature variability between 170 and 220 km. Analysis of the data shows (1) low-mid latitude northern hemisphere CO2 densities at 170 km vary by a factor of about 2.5, (2) on average, the N2/CO2 increases from 0.042 ± 0.017 at 130 km to 0.12 ± 0.06 at 200 km, and (3) the mean upper atmospheric temperature is 324 ± 22 K for local times near 14:00.


Astronomy and Astrophysics | 2010

The EUV spectrum of the Sun: long-term variations in the SOHO CDS NIS spectral responsivities

G. Del Zanna; V. Andretta; Phillip C. Chamberlin; Thomas N. Woods; William T. Thompson

We present SOHO Coronal Diagnostic Spectrometer (CDS) normal incidence, extreme-ultraviolet spectra of the Sun taken from the beginning of the mission in 1996 until now. We use various methods to study the performance of the instrument during such a long time span. Assuming that the basal chromospheric-transition region emission in the quiet parts of the Sun does not vary over the cycle, we find a slow decrease in the instrument sensitivity over time. We applied a correction to the NIS (Normal Incidence Spectrograph) data, using as a starting reference the NIS absolute calibration obtained from a comparison with a rocket flight in May 1997. We then obtained NIS full-Sun spectral irradiances from observations in 2008 and compared them with the EUV irradiances obtained from the rocket that flew on April 14, 2008 a prototype of the Solar Dynamics Observatory EVE instrument. Excellent agreement is found between the EUV irradiances from NIS and from the EVE-prototype, confirming the NIS radiometric calibration. The NIS instrument over 13 years has performed exceptionally well, with only a factor of about 2 decrease in responsivity for most wavelengths.


The Astrophysical Journal | 2013

DECAY-PHASE COOLING AND INFERRED HEATING OF M- AND X-CLASS SOLAR FLARES

Daniel F. Ryan; Phillip C. Chamberlin; Ryan O. Milligan; Peter T. Gallagher

In this paper, the cooling of 72 M- and X-class flares is examined using GOES/XRS and SDO/EVE. The observed cooling rates are quantified and the observed total cooling times are compared to the predictions of an analytical 0-D hydrodynamic model. It is found that the model does not fit the observations well, but does provide a well defined lower limit on a flares total cooling time. The discrepancy between observations and the model is then assumed to be primarily due to heating during the decay phase. The decay phase heating necessary to account for the discrepancy is quantified and found be ~50% of the total thermally radiated energy as calculated with GOES. This decay phase heating is found to scale with the observed peak thermal energy. It is predicted that approximating the total thermal energy from the peak is minimally affected by the decay phase heating in small flares. However, in the most energetic flares the decay phase heating inferred from the model can be several times greater than the peak thermal energy.


Journal of Geophysical Research | 2010

Four Martian years of nightside upper thermospheric mass densities derived from electron reflectometry: Method extension and comparison with GCM simulations

Robert J. Lillis; Stephen W. Bougher; Francisco Gonzalez-Galindo; F. Forget; Michael D. Smith; Phillip C. Chamberlin

The long-term dynamics of the Martian upper thermosphere near the exobase (~160-200 km) are still relatively poorly constrained by data. Electron reflectometry (ER) provides a way to derive, from electron loss cones, neutral mass densities at these altitudes in the night hemisphere. Because the Mars Global Surveyor Electron Reflectometer was not designed for this purpose, uncertainties in individual measurements are large and thus upper thermospheric variability can be characterized only on time scales of weeks or longer. Density measurements are presented at 2 A.M. local time and 185 km altitude, from April 1999 until November 2006, spanning ~4 Martian years. We observe a weaker correlation with lower atmospheric dust activity than is seen in the lower thermosphere and a weaker correlation with solar EUV flux than is observed in the dayside exosphere. Seasonally repeating features are (1) overall expansion/contraction of the nighttime thermosphere with heliocentric distance, (2) much lower densities at the aphelion winter pole compared to the perihelion winter pole, and (3) a short-lived local density maximum at aphelion in the southern hemisphere. Interannual differences are also observed; in particular, the interval of low densities in the southern winter occurs progressively later as solar EUV flux decreases from solar maximum to solar minimum. Results are compared with predictions from the Mars Thermosphere General Circulation Model and LMD Mars Global Circulation atmospheric model frameworks for Ls = 90°-180°, which generally underestimate and overestimate neutral densities, respectively. This disagreement reflects the difficulty in simulating nightside dynamical and cooling processes. Copyright 2010 by the American Geophysical Union.

Collaboration


Dive into the Phillip C. Chamberlin's collaboration.

Top Co-Authors

Avatar

Thomas N. Woods

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Francis G. Eparvier

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Stanley C. Solomon

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

E. M. B. Thiemann

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

F. G. Eparvier

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Andrew Jones

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

W. K. Peterson

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Bruce M. Jakosky

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Rachel A. Hock

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Leonid V. Didkovsky

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge