Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Phillip J. Stansfeld is active.

Publication


Featured researches published by Phillip J. Stansfeld.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Structures of ABCB10, a human ATP-binding cassette transporter in apo- and nucleotide-bound states

C.A. Shintre; A.C.W. Pike; Qiuhong Li; J. Kim; Alastair J. Barr; S. Goubin; L. Shrestha; Jing Yang; G. Berridge; Jonathan E. Ross; Phillip J. Stansfeld; Mark S.P. Sansom; A. Edwards; C. Bountra; Brian D. Marsden; Frank von Delft; Alex N. Bullock; O. Gileadi; N. Burgess-Brown; Elisabeth P. Carpenter

ABCB10 is one of the three ATP-binding cassette (ABC) transporters found in the inner membrane of mitochondria. In mammals ABCB10 is essential for erythropoiesis, and for protection of mitochondria against oxidative stress. ABCB10 is therefore a potential therapeutic target for diseases in which increased mitochondrial reactive oxygen species production and oxidative stress play a major role. The crystal structure of apo-ABCB10 shows a classic exporter fold ABC transporter structure, in an open-inwards conformation, ready to bind the substrate or nucleotide from the inner mitochondrial matrix or membrane. Unexpectedly, however, ABCB10 adopts an open-inwards conformation when complexed with nonhydrolysable ATP analogs, in contrast to other transporter structures which adopt an open-outwards conformation in complex with ATP. The three complexes of ABCB10/ATP analogs reported here showed varying degrees of opening of the transport substrate binding site, indicating that in this conformation there is some flexibility between the two halves of the protein. These structures suggest that the observed plasticity, together with a portal between two helices in the transmembrane region of ABCB10, assist transport substrate entry into the substrate binding cavity. These structures indicate that ABC transporters may exist in an open-inwards conformation when nucleotide is bound. We discuss ways in which this observation can be aligned with the current views on mechanisms of ABC transporters.


Journal of Chemical Theory and Computation | 2011

From Coarse Grained to Atomistic: A Serial Multiscale Approach to Membrane Protein Simulations.

Phillip J. Stansfeld; Mark S.P. Sansom

Coarse-grained molecular dynamics provides a means for simulating the assembly and the interactions of membrane protein/lipid complexes at a reduced level of representation, allowing longer and larger simulations. We describe a fragment-based protocol for converting membrane simulation systems, comprising a membrane protein embedded in a phospholipid bilayer, from coarse-grained to atomistic resolution, for further refinement and analysis via atomistic simulations. Overall, this provides a method for generating an accurate and well equilibrated membrane protein/lipid complex. We exemplify the protocol using the acid-sensing/amiloride-sensitive ion channel protein (ASIC) channel protein, a trimeric integral membrane protein. The method is further evaluated using a test set of 10 different membrane proteins of differing size and complexity. Simulations are assessed in terms of protein conformational drift, lipid/protein interactions, and lipid dynamics.


Structure | 2011

Molecular Simulation Approaches to Membrane Proteins

Phillip J. Stansfeld; Mark S.P. Sansom

Molecular simulations are an invaluable tool for understanding membrane proteins. Improvements to both hardware and simulation methods have allowed access to physiologically relevant timescales and have permitted the simulation of large multimeric complexes. This, coupled to the recent expansion in membrane protein structures, provides a means to elucidate the relationship between protein structure and function. In this review, we discuss the progress in using simulations to understand the complex processes that occur at the boundary of a cell, ranging from the transport of solutes and the interactions of ligands with ion channels to the conformational rearrangements required for gating of channels and the signaling by membrane-associated complexes.


Nature | 2014

Structural basis for outer membrane lipopolysaccharide insertion

Haohao Dong; Quanju Xiang; Yinghong Gu; Zhongshan Wang; Neil G. Paterson; Phillip J. Stansfeld; Chuan He; Yizheng Zhang; Wenjian Wang; Changjiang Dong

Lipopolysaccharide (LPS) is essential for most Gram-negative bacteria and has crucial roles in protection of the bacteria from harsh environments and toxic compounds, including antibiotics. Seven LPS transport proteins (that is, LptA–LptG) form a trans-envelope protein complex responsible for the transport of LPS from the inner membrane to the outer membrane, the mechanism for which is poorly understood. Here we report the first crystal structure of the unique integral membrane LPS translocon LptD–LptE complex. LptD forms a novel 26-stranded β-barrel, which is to our knowledge the largest β-barrel reported so far. LptE adopts a roll-like structure located inside the barrel of LptD to form an unprecedented two-protein ‘barrel and plug’ architecture. The structure, molecular dynamics simulations and functional assays suggest that the hydrophilic O-antigen and the core oligosaccharide of the LPS may pass through the barrel and the lipid A of the LPS may be inserted into the outer leaflet of the outer membrane through a lateral opening between strands β1 and β26 of LptD. These findings not only help us to understand important aspects of bacterial outer membrane biogenesis, but also have significant potential for the development of novel drugs against multi-drug resistant pathogenic bacteria.


Structure | 2015

MemProtMD: Automated Insertion of Membrane Protein Structures into Explicit Lipid Membranes

Phillip J. Stansfeld; Joseph Goose; Martin Caffrey; Elisabeth P. Carpenter; Joanne L. Parker; Simon Newstead; Mark S. P. Sansom

Summary There has been exponential growth in the number of membrane protein structures determined. Nevertheless, these structures are usually resolved in the absence of their lipid environment. Coarse-grained molecular dynamics (CGMD) simulations enable insertion of membrane proteins into explicit models of lipid bilayers. We have automated the CGMD methodology, enabling membrane protein structures to be identified upon their release into the PDB and embedded into a membrane. The simulations are analyzed for protein-lipid interactions, identifying lipid binding sites, and revealing local bilayer deformations plus molecular access pathways within the membrane. The coarse-grained models of membrane protein/bilayer complexes are transformed to atomistic resolution for further analysis and simulation. Using this automated simulation pipeline, we have analyzed a number of recently determined membrane protein structures to predict their locations within a membrane, their lipid/protein interactions, and the functional implications of an enhanced understanding of the local membrane environment of each protein.


The Journal of Membrane Biology | 2010

Lipidbook: A Public Repository for Force-Field Parameters Used in Membrane Simulations

Jan Domański; Phillip J. Stansfeld; Mark S.P. Sansom; Oliver Beckstein

Lipidbook is a public database for force-field parameters with a special emphasis on lipids, detergents and similar molecules that are of interest when simulating biological membrane systems. It stores parameter files that are supplied by the community. Topologies, parameters and lipid or whole bilayer structures can be deposited in any format for any simulation code, preferably under a license that promotes “open knowledge.” A number of mechanisms are implemented to aid a user in judging the appropriateness of a given parameter set for a project. For instance, parameter sets are versioned, linked to the primary citation via PubMed identifier and digital object identifier (DOI), and users can publicly comment on deposited parameters. Licensing and, hence, the conditions for use and dissemination of academically generated data are often unclear. In those cases it is also possible to provide a link instead of uploading a file. A snapshot of the linked file is then archived using the WebCite® service without further involvement of the user or Lipidbook, thus ensuring a transparent and permanent history of the parameter set. Lipidbook can be accessed freely online at http://lipidbook.bioch.ox.ac.uk. Deposition of data requires online registration.


Nature | 2012

Structure of the TatC core of the twin-arginine protein transport system

Sarah E. Rollauer; Michael J. Tarry; James E. Graham; Mari Jääskeläinen; Franziska Jäger; Steven Johnson; Martin Krehenbrink; Sai-Man Liu; Michael J. Lukey; Julien Marcoux; Melanie A. McDowell; Fernanda Rodriguez; Pietro Roversi; Phillip J. Stansfeld; Carol V. Robinson; Mark S.P. Sansom; Tracy Palmer; Martin Högbom; Ben C. Berks; Susan M. Lea

The twin-arginine translocation (Tat) pathway is one of two general protein transport systems found in the prokaryotic cytoplasmic membrane and is conserved in the thylakoid membrane of plant chloroplasts. The defining, and highly unusual, property of the Tat pathway is that it transports folded proteins, a task that must be achieved without allowing appreciable ion leakage across the membrane. The integral membrane TatC protein is the central component of the Tat pathway. TatC captures substrate proteins by binding their signal peptides. TatC then recruits TatA family proteins to form the active translocation complex. Here we report the crystal structure of TatC from the hyperthermophilic bacterium Aquifex aeolicus. This structure provides a molecular description of the core of the Tat translocation system and a framework for understanding the unique Tat transport mechanism.


Nature | 2016

Structural basis of outer membrane protein insertion by the BAM complex

Yinghong Gu; Huanyu Li; Haohao Dong; Yi Zeng; Zhengyu Zhang; Neil G. Paterson; Phillip J. Stansfeld; Zhongshan Wang; Yizheng Zhang; Wenjian Wang; Changjiang Dong

All Gram-negative bacteria, mitochondria and chloroplasts have outer membrane proteins (OMPs) that perform many fundamental biological processes. The OMPs in Gram-negative bacteria are inserted and folded into the outer membrane by the β-barrel assembly machinery (BAM). The mechanism involved is poorly understood, owing to the absence of a structure of the entire BAM complex. Here we report two crystal structures of the Escherichia coli BAM complex in two distinct states: an inward-open state and a lateral-open state. Our structures reveal that the five polypeptide transport-associated domains of BamA form a ring architecture with four associated lipoproteins, BamB–BamE, in the periplasm. Our structural, functional studies and molecular dynamics simulations indicate that these subunits rotate with respect to the integral membrane β-barrel of BamA to induce movement of the β-strands of the barrel and promote insertion of the nascent OMP.


Biochemistry | 2009

PIP2-Binding Site in Kir Channels: Definition by Multiscale Biomolecular Simulations

Phillip J. Stansfeld; Richard J. Hopkinson; Frances M. Ashcroft; Mark S.P. Sansom

Phosphatidylinositol bisphosphate (PIP2) is an activator of mammalian inwardly rectifying potassium (Kir) channels. Multiscale simulations, via a sequential combination of coarse-grained and atomistic molecular dynamics, enabled exploration of the interactions of PIP2 molecules within the inner leaflet of a lipid bilayer membrane with possible binding sites on Kir channels. Three Kir channel structures were investigated: X-ray structures of KirBac1.1 and of a Kir3.1−KirBac1.3 chimera and a homology model of Kir6.2. Coarse-grained simulations of the Kir channels in PIP2-containing lipid bilayers identified the PIP2-binding site on each channel. These models of the PIP2−channel complexes were refined by conversion to an atomistic representation followed by molecular dynamics simulation in a lipid bilayer. All three channels were revealed to contain a conserved binding site at the N-terminal end of the slide (M0) helix, at the interface between adjacent subunits of the channel. This binding site agrees with mutagenesis data and is in the proximity of the site occupied by a detergent molecule in the Kir chimera channel crystal. Polar contacts in the coarse-grained simulations corresponded to long-lived electrostatic and H-bonding interactions between the channel and PIP2 in the atomistic simulations, enabling identification of key side chains.


Journal of Biological Chemistry | 2011

Mechanistic insight into human ether-a-go-go-related gene (hERG) K+ channel deactivation gating from the solution structure of the EAG domain.

Frederick W. Muskett; Samrat Thouta; Steven J. Thomson; Alexander Bowen; Phillip J. Stansfeld; John S. Mitcheson

Human ether-à-go-go-related gene (hERG) K+ channels have a critical role in cardiac repolarization. hERG channels close (deactivate) very slowly, and this is vital for regulating the time course and amplitude of repolarizing current during the cardiac action potential. Accelerated deactivation is one mechanism by which inherited mutations cause long QT syndrome and potentially lethal arrhythmias. hERG deactivation is highly dependent upon an intact EAG domain (the first 135 amino acids of the N terminus). Importantly, deletion of residues 2–26 accelerates deactivation to a similar extent as removing the entire EAG domain. These and other experiments suggest the first 26 residues (NT1–26) contain structural elements required to slow deactivation by stabilizing the open conformation of the pore. Residues 26–135 form a Per-Arnt-Sim domain, but a structure for NT1–26 has not been forthcoming, and little is known about its site of interaction on the channel. In this study, we present an NMR structure for the entire EAG domain, which reveals that NT1–26 is structurally independent from the Per-Arnt-Sim domain and contains a stable amphipathic helix with one face being positively charged. Mutagenesis and electrophysiological studies indicate that neutralizing basic residues and breaking the amphipathic helix dramatically accelerate deactivation. Furthermore, scanning mutagenesis and molecular modeling studies of the cyclic nucleotide binding domain suggest that negatively charged patches on its cytoplasmic surface form an interface with the NT1–26 domain. We propose a model in which NT1–26 obstructs gating motions of the cyclic nucleotide binding domain to allosterically stabilize the open conformation of the pore.

Collaboration


Dive into the Phillip J. Stansfeld's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge