Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Phillip Stafford is active.

Publication


Featured researches published by Phillip Stafford.


The EMBO Journal | 1999

Rat8p/Dbp5p is a shuttling transport factor that interacts with Rat7p/Nup159p and Gle1p and suppresses the mRNA export defect of xpo1-1 cells.

Christine A. Hodge; Hildur V. Colot; Phillip Stafford; Charles N. Cole

In a screen for temperature‐sensitive mutants of Saccharomyces cerevisiae defective for mRNA export, we previously identified the essential DEAD‐box protein Dbp5p/Rat8p and the nucleoporin Rat7p/Nup159p. Both are essential for mRNA export. Here we report that Dbp5p and Rat7p interact through their Nterminal domains. Deletion of this portion of Rat7p (Rat7pΔN) results in strong defects in mRNA export and eliminates association of Dbp5p with nuclear pores. Overexpression of Dbp5p completely suppressed the growth and mRNA export defects of rat7ΔN cells and resulted in weaker suppression in cells carrying rat7‐1 or the rss1‐37 allele of GLE1. Dbp5p interacts with Gle1p independently of the N‐terminus of Dbp5p. Dbp5p shuttles between nucleus and cytoplasm in an Xpo1p‐dependent manner. It accumulates in nuclei of xpo1‐1 cells and in cells with mutations affecting Mex67p (mex67‐5), Gsp1p (Ran) or Ran effectors. Overexpression of Dbp5p prevents nuclear accumulation of mRNA in xpo1‐1 cells, but does not restore growth, suggesting that the RNA export defect of xpo1‐1 cells may be indirect. In a screen for high‐copy suppressors of the rat8‐2 allele of DBP5, we identified YMR255w, now called GFD1. Gfd1p is not essential, interacts with Gle1p and Rip1p/Nup42p, and is found in the cytoplasm and at the nuclear rim.


Clinical & Experimental Metastasis | 2008

Acid treatment of melanoma cells selects for invasive phenotypes.

Raymond E. Moellering; Kvar C. Black; Chetan Krishnamurty; Brenda Baggett; Phillip Stafford; Matthew Rain; Robert A. Gatenby; Robert J. Gillies

Solid tumors become acidic due to hypoxia and upregulated glycolysis. We have hypothesized that this acidosis leads to more aggressive invasive behavior during carcinogenesis (Nature Reviews Cancer 4:891–899, 2004). Previous work on this subject has shown mixed results. While some have observed an induction of metastasis and invasion with acid treatments, others have not. To investigate this, human melanoma cells were acclimated to low pH growth conditions. Significant cell mortality occurred during acclimation, suggesting that acidosis selected for resistant phenotypes. Cells maintained under acidic conditions exhibited a greater range of motility, a reduced capacity to form flank tumors in SCID mice and did not invade more rapidly in vitro, compared to non-selected control cells. However, re-acclimation of these selected cells to physiological pH gave rise to stable populations with significantly higher in vitro invasion. These re-acclimated cells maintained higher invasion and higher motility for multiple generations. Transcriptomic analyses of these three phenotypes revealed significant differences, including upregulation of relevant pathways important for tissue remodeling, cell cycle control and proliferation. These results reinforce the hypothesis that acidosis promotes selection of stable, more invasive phenotypes, rather than inductive changes, which would be reversible.


Nutrition & Metabolism | 2010

The ketogenic diet reverses gene expression patterns and reduces reactive oxygen species levels when used as an adjuvant therapy for glioma

Phillip Stafford; Mohammed G. Abdelwahab; Do Young Kim; Mark C. Preul; Jong M. Rho; Adrienne C. Scheck

BackgroundMalignant brain tumors affect people of all ages and are the second leading cause of cancer deaths in children. While current treatments are effective and improve survival, there remains a substantial need for more efficacious therapeutic modalities. The ketogenic diet (KD) - a high-fat, low-carbohydrate treatment for medically refractory epilepsy - has been suggested as an alternative strategy to inhibit tumor growth by altering intrinsic metabolism, especially by inducing glycopenia.MethodsHere, we examined the effects of an experimental KD on a mouse model of glioma, and compared patterns of gene expression in tumors vs. normal brain from animals fed either a KD or a standard diet.ResultsAnimals received intracranial injections of bioluminescent GL261-luc cells and tumor growth was followed in vivo. KD treatment significantly reduced the rate of tumor growth and prolonged survival. Further, the KD reduced reactive oxygen species (ROS) production in tumor cells. Gene expression profiling demonstrated that the KD induces an overall reversion to expression patterns seen in non-tumor specimens. Notably, genes involved in modulating ROS levels and oxidative stress were altered, including those encoding cyclooxygenase 2, glutathione peroxidases 3 and 7, and periredoxin 4.ConclusionsOur data demonstrate that the KD improves survivability in our mouse model of glioma, and suggests that the mechanisms accounting for this protective effect likely involve complex alterations in cellular metabolism beyond simply a reduction in glucose.


PLOS ONE | 2012

The ketogenic diet is an effective adjuvant to radiation therapy for the treatment of malignant glioma.

Mohammed G. Abdelwahab; Kathryn E. Fenton; Mark C. Preul; Jong M. Rho; Andy G. Lynch; Phillip Stafford; Adrienne C. Scheck

Introduction The ketogenic diet (KD) is a high-fat, low-carbohydrate diet that alters metabolism by increasing the level of ketone bodies in the blood. KetoCal® (KC) is a nutritionally complete, commercially available 4∶1 (fat∶ carbohydrate+protein) ketogenic formula that is an effective non-pharmacologic treatment for the management of refractory pediatric epilepsy. Diet-induced ketosis causes changes to brain homeostasis that have potential for the treatment of other neurological diseases such as malignant gliomas. Methods We used an intracranial bioluminescent mouse model of malignant glioma. Following implantation animals were maintained on standard diet (SD) or KC. The mice received 2×4 Gy of whole brain radiation and tumor growth was followed by in vivo imaging. Results Animals fed KC had elevated levels of β-hydroxybutyrate (p = 0.0173) and an increased median survival of approximately 5 days relative to animals maintained on SD. KC plus radiation treatment were more than additive, and in 9 of 11 irradiated animals maintained on KC the bioluminescent signal from the tumor cells diminished below the level of detection (p<0.0001). Animals were switched to SD 101 days after implantation and no signs of tumor recurrence were seen for over 200 days. Conclusions KC significantly enhances the anti-tumor effect of radiation. This suggests that cellular metabolic alterations induced through KC may be useful as an adjuvant to the current standard of care for the treatment of human malignant gliomas.


BMC Bioinformatics | 2012

GuiTope: an application for mapping random- sequence peptides to protein sequences

Rebecca Halperin; Phillip Stafford; Jack S Emery; Krupa Arun Navalkar; Stephen Albert Johnston

BackgroundRandom-sequence peptide libraries are a commonly used tool to identify novel ligands for binding antibodies, other proteins, and small molecules. It is often of interest to compare the selected peptide sequences to the natural protein binding partners to infer the exact binding site or the importance of particular residues. The ability to search a set of sequences for similarity to a set of peptides may sometimes enable the prediction of an antibody epitope or a novel binding partner. We have developed a software application designed specifically for this task.ResultsGuiTope provides a graphical user interface for aligning peptide sequences to protein sequences. All alignment parameters are accessible to the user including the ability to specify the amino acid frequency in the peptide library; these frequencies often differ significantly from those assumed by popular alignment programs. It also includes a novel feature to align di-peptide inversions, which we have found improves the accuracy of antibody epitope prediction from peptide microarray data and shows utility in analyzing phage display datasets. Finally, GuiTope can randomly select peptides from a given library to estimate a null distribution of scores and calculate statistical significance.ConclusionsGuiTope provides a convenient method for comparing selected peptide sequences to protein sequences, including flexible alignment parameters, novel alignment features, ability to search a database, and statistical significance of results. The software is available as an executable (for PC) at http://www.immunosignature.com/software and ongoing updates and source code will be available at sourceforge.net.


Molecular & Cellular Proteomics | 2011

Exploring antibody recognition of sequence space through random-sequence peptide microarrays

Rebecca Halperin; Phillip Stafford; Stephen Albert Johnston

A universal platform for efficiently mapping antibody epitopes would be of great use for many applications, ranging from antibody therapeutic development to vaccine design. Here we tested the feasibility of using a random peptide microarray to map antibody epitopes. Although peptide microarrays are physically constrained to ∼104 peptides per array, compared with 108 permitted in library panning approaches such as phage display, they enable a much more high though put and direct measure of binding. Long (20 mer) random sequence peptides were chosen for this study to look at an unbiased sampling of sequence space. This sampling of sequence space is sparse, as an exact epitope sequence is unlikely to appear. Commercial monoclonal antibodies with known linear epitopes or polyclonal antibodies raised against engineered 20-mer peptides were used to evaluate this array as an epitope mapping platform. Remarkably, peptides with the most sequence similarity to known epitopes were only slightly more likely to be recognized by the antibody than other random peptides. We explored the ability of two methods singly and in combination to predict the actual epitope from the random sequence peptides bound. Though the epitopes were not directly evident, subtle motifs were found among the top binding peptides for each antibody. These motifs did have some predictive ability in searching for the known epitopes among a set of decoy sequences. The second approach using a windowing alignment strategy, was able to score known epitopes of monoclonal antibodies well within the test dataset, but did not perform as well on polyclonals. Random peptide microarrays of even limited diversity may serve as a useful tool to prioritize candidates for epitope mapping or antigen identification.


Annals of Neurology | 2011

Application of immunosignatures to the assessment of Alzheimer's disease.

Lucas Restrepo; Phillip Stafford; D. Mitch Magee; Stephen Albert Johnston

Accurate assessment of Alzheimers disease (AD), both presymptomatically and at different disease stages, will become increasingly important with the expanding elderly population. There are a number of indications that the immune system is engaged in AD. Here we explore the ability of an antibody‐profiling technology to characterize AD and screen for peptides that may be used for a simple diagnostic test.


Nature Communications | 2014

Scalable high-density peptide arrays for comprehensive health monitoring

Joseph Barten Legutki; Zhan Gong Zhao; Matt Greving; Neal W. Woodbury; Stephen Albert Johnston; Phillip Stafford

There is an increasing awareness that health care must move from post-symptomatic treatment to presymptomatic intervention. An ideal system would allow regular inexpensive monitoring of health status using circulating antibodies to report on health fluctuations. Recently, we demonstrated that peptide microarrays can do this through antibody signatures (immunosignatures). Unfortunately, printed microarrays are not scalable. Here we demonstrate a platform based on fabricating microarrays (~10 M peptides per slide, 330,000 peptides per assay) on silicon wafers using equipment common to semiconductor manufacturing. The potential of these microarrays for comprehensive health monitoring is verified through the simultaneous detection and classification of six different infectious diseases and six different cancers. Besides diagnostics, these high-density peptide chips have numerous other applications both in health care and elsewhere.


Nucleic Acids Research | 2007

Three methods for optimization of cross-laboratory and cross-platform microarray expression data

Phillip Stafford; Marcel Brun

Microarray gene expression data becomes more valuable as our confidence in the results grows. Guaranteeing data quality becomes increasingly important as microarrays are being used to diagnose and treat patients (1–4). The MAQC Quality Control Consortium, the FDAs Critical Path Initiative, NCIs caBIG and others are implementing procedures that will broadly enhance data quality. As GEO continues to grow, its usefulness is constrained by the level of correlation across experiments and general applicability. Although RNA preparation and array platform play important roles in data accuracy, pre-processing is a user-selected factor that has an enormous effect. Normalization of expression data is necessary, but the methods have specific and pronounced effects on precision, accuracy and historical correlation. As a case study, we present a microarray calibration process using normalization as the adjustable parameter. We examine the impact of eight normalizations across both Agilent and Affymetrix expression platforms on three expression readouts: (1) sensitivity and power, (2) functional/biological interpretation and (3) feature selection and classification error. The reader is encouraged to measure their own discordant data, whether cross-laboratory, cross-platform or across any other variance source, and to use their results to tune the adjustable parameters of their laboratory to ensure increased correlation.


PLOS ONE | 2012

Immunosignaturing Can Detect Products from Molecular Markers in Brain Cancer

Alexa K. Hughes; Zbigniew A. Cichacz; Adrienne Scheck; Stephen W. Coons; Stephen Albert Johnston; Phillip Stafford

Immunosignaturing shows promise as a general approach to diagnosis. It has been shown to detect immunological signs of infection early during the course of disease and to distinguish Alzheimer’s disease from healthy controls. Here we test whether immunosignatures correspond to clinical classifications of disease using samples from people with brain tumors. Blood samples from patients undergoing craniotomies for therapeutically naïve brain tumors with diagnoses of astrocytoma (23 samples), Glioblastoma multiforme (22 samples), mixed oligodendroglioma/astrocytoma (16 samples), oligodendroglioma (18 samples), and 34 otherwise healthy controls were tested by immunosignature. Because samples were taken prior to adjuvant therapy, they are unlikely to be perturbed by non-cancer related affects. The immunosignaturing platform distinguished not only brain cancer from controls, but also pathologically important features about the tumor including type, grade, and the presence or absence of O6-methyl-guanine-DNA methyltransferase methylation promoter (MGMT), an important biomarker that predicts response to temozolomide in Glioblastoma multiformae patients.

Collaboration


Dive into the Phillip Stafford's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adrienne C. Scheck

Barrow Neurological Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lucas Restrepo

University of California

View shared research outputs
Top Co-Authors

Avatar

Mark C. Preul

St. Joseph's Hospital and Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge