Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Phong K. Thai is active.

Publication


Featured researches published by Phong K. Thai.


Science of The Total Environment | 2017

A review of biomass burning: Emissions and impacts on air quality, health and climate in China.

Jianmin Chen; Chunlin Li; Zoran Ristovski; Andelija Milic; YuanTong Gu; Mohammad S. Islam; Shuxiao Wang; Jiming Hao; Hefeng Zhang; Congrong He; Hai Guo; Hongbo Fu; Branka Miljevic; Lidia Morawska; Phong K. Thai; Yun Fat Lam; Gavin Pereira; Aijun Ding; Xin Huang; Umesh C. Dumka

Biomass burning (BB) is a significant air pollution source, with global, regional and local impacts on air quality, public health and climate. Worldwide an extensive range of studies has been conducted on almost all the aspects of BB, including its specific types, on quantification of emissions and on assessing its various impacts. China is one of the countries where the significance of BB has been recognized, and a lot of research efforts devoted to investigate it, however, so far no systematic reviews were conducted to synthesize the information which has been emerging. Therefore the aim of this work was to comprehensively review most of the studies published on this topic in China, including literature concerning field measurements, laboratory studies and the impacts of BB indoors and outdoors in China. In addition, this review provides insights into the role of wildfire and anthropogenic BB on air quality and health globally. Further, we attempted to provide a basis for formulation of policies and regulations by policy makers in China.


Forensic Science International | 2013

Estimating daily and diurnal variations of illicit drug use in Hong Kong: a pilot study of using wastewater analysis in an Asian metropolitan city.

Foon Yin Lai; Raimondo Bruno; H.W. Leung; Phong K. Thai; Christoph Ort; Steve Carter; Kristie Thompson; Paul K.S. Lam; Jochen F. Mueller

The measurement of illicit drug metabolites in raw wastewater is increasingly being adopted as an approach to objectively monitor population-level drug use, and is an effective complement to traditional epidemiological methods. As such, it has been widely applied in western countries. In this study, we utilised this approach to assess drug use patterns over nine days during April 2011 in Hong Kong. Raw wastewater samples were collected from the largest wastewater treatment plant serving a community of approximately 3.5 million people and analysed for excreted drug residues including cocaine, ketamine, methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA) and key metabolites using liquid chromatography coupled with tandem mass spectrometry. The overall drug use pattern determined by wastewater analysis was consistent with that have seen amongst people coming into contact with services in relation to substance use; among our target drugs, ketamine (estimated consumption: 1400-1600 mg/day/1000 people) was the predominant drug followed by methamphetamine (180-200 mg/day/1000 people), cocaine (160-180 mg/day/1000 people) and MDMA (not detected). The levels of these drugs were relatively steady throughout the monitoring period. Analysing samples at higher temporal resolution provided data on diurnal variations of drug residue loads. Elevated ratios of cocaine to benzoylecgonine were identified unexpectedly in three samples during the evening and night, providing evidence for potential dumping events of cocaine. This study provides the first application of wastewater analysis to quantitatively evaluate daily drug use in an Asian metropolitan community. Our data reinforces the benefit of wastewater monitoring to health and law enforcement authorities for strategic planning and evaluation of drug intervention strategies.


Science of The Total Environment | 2014

Towards development of a rapid and effective non-destructive testing strategy to identify brominated flame retardants in the plastics of consumer products.

Christie Gallen; Andrew Banks; S.H. Brandsma; Christine Baduel; Phong K. Thai; Geoff Eaglesham; Amy Heffernan; P.E.G. Leonards; Paul Bainton; Jochen F. Mueller

Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants (BFRs) once extensively used in the plastics of a wide range of consumer products. The listing of certain congeners that are constituents of commercial PBDE mixtures (including c-octaBDE) in the Stockholm Convention and tightening regulation of many other BFRs in recent years have created the need for a rapid and effective method of identifying BFR-containing plastics. A three-tiered testing strategy comparing results from non-destructive testing (X-ray fluorescence (XRF)) (n=1714), a surface wipe test (n=137) and destructive chemical analysis (n=48) was undertaken to systematically identify BFRs in a wide range of consumer products. XRF rapidly identified bromine in 92% of products later confirmed to contain BFRs. Surface wipes of products identified tetrabromobisphenol A (TBBPA), c-octaBDE congeners and BDE-209 with relatively high accuracy (>75%) when confirmed by destructive chemical analysis. A relationship between the amounts of BFRs detected in surface wipes and subsequent destructive testing shows promise in predicting not only the types of BFRs present but also estimating the concentrations present. Information about the types of products that may contain persistent BFRs will assist regulators in implementing policies to further reduce the occurrence of these chemicals in consumer products.


Science of The Total Environment | 2016

Ambient temperature and risk of cardiovascular hospitalization: An updated systematic review and meta-analysis

Dung Phung; Phong K. Thai; Yuming Guo; Lidia Morawska; Shannon Rutherford; Cordia Ming-Yeuk Chu

The association between temperatures and risk of cardiovascular mortality has been recognized but the association drawn from previous meta-analysis was weak due to the lack of sufficient studies. This paper presented a review with updated reports in the literature about the risk of cardiovascular hospitalization in relation to different temperature exposures and examined the dose-response relationship of temperature-cardiovascular hospitalization by change in units of temperature, latitudes, and lag days. The pooled effect sizes were calculated for cold, heat, heatwave, and diurnal variation using random-effects meta-analysis, and the dose-response relationship of temperature-cardiovascular admission was modelled using random-effect meta-regression. The Cochrane Q-test and index of heterogeneity (I(2)) were used to evaluate heterogeneity, and Eggers test was used to evaluate publication bias. Sixty-four studies were included in meta-analysis. The pooled results suggest that for a change in temperature condition, the risk of cardiovascular hospitalization increased 2.8% (RR, 1.028; 95% CI, 1.021-1.035) for cold exposure, 2.2% (RR, 1.022; 95% CI, 1.006-1.039) for heatwave exposure, and 0.7% (RR, 1.007; 95% CI, 1.002-1.012) for an increase in diurnal temperature. However no association was observed for heat exposure. The significant dose-response relationship of temperature - cardiovascular admission was found with cold exposure and diurnal temperature. Increase in one-day lag caused a marginal reduction in risk of cardiovascular hospitalizations for cold exposure and diurnal variation, and increase in latitude was associated with a decrease in risk of cardiovascular hospitalizations for diurnal temperature only. There is a significant short-term effect of cold exposure, heatwave and diurnal variation on cardiovascular hospitalizations. Further research is needed to understand the temperature-cardiovascular relationship for different climate areas.


Addiction | 2012

An analysis of ethical issues in using wastewater analysis to monitor illicit drug use

Wayne Hall; James W. Prichard; Paul Kirkbride; Raimondo Bruno; Phong K. Thai; Coral Gartner; Foon Yin Lai; Christoph Ort; Jochen F. Mueller

AIMS To discuss ethical issues that may arise in using WWA to monitor illicit drug use in the general population and in entertainment precincts, prisons, schools and work-places. METHOD Review current applications of WWA and identify ethical and social issues that may be raised with current and projected future uses of this method. RESULTS Wastewater analysis (WWA) of drug residues is a promising method of monitoring illicit drug use that may overcome some limitations of other monitoring methods. When used for monitoring purposes in large populations, WWA does not raise major ethical concerns because individuals are not identified and the prospects of harming residents of catchment areas are remote. When WWA is used in smaller catchment areas (entertainment venues, prisons, schools or work-places) their results could, possibly, indirectly affect the occupants adversely. Researchers will need to take care in reporting their results to reduce media misreporting. Fears about possible use of WWA for mass individual surveillance by drug law enforcement officials are unlikely to be realized, but will need to be addressed because they may affect public support adversely for this type of research. CONCLUSIONS Using wastewater analysis to monitor illicit drug use in large populations does not raise major ethical concerns, but researchers need to minimize possible adverse consequences in studying smaller populations, such as workers, prisoners and students.


Science of The Total Environment | 2015

The first application of wastewater-based drug epidemiology in five South Korean cities.

Ki Yong Kim; Foon Yin Lai; Hee Young Kim; Phong K. Thai; Jochen F. Mueller; Jeong-Eun Oh

Illicit drug consumption in five cities in South Korea was estimated by analyzing 17 drug residues in untreated wastewater samples collected during the Christmas and New Year period of 2012-13. Only methamphetamine, amphetamine, and codeine were detected at concentrations of tens of nanograms per liter or even lower concentrations in more than 90% of the samples. Other illicit drug residues (including cocaine, methadone, and benzoylecgonine) that have been detected frequently in wastewater from other countries were not found in this study. Methamphetamine was found to be the most widely used illicit drug in South Korea, and the estimated average consumption rate was 22 mg d(-1) (1000 people)(-1). This rate is, for example, 2-5 times lower than the estimated average consumption rates in Hong Kong and other parts of China and 4-80 times lower than the estimated average consumption rates in cities in Western countries. It should be noted that the wastewater samples analyzed in this study were collected during a holiday season, when daily consumption of illicit drugs is often higher than on an average day. The methamphetamine usage rates were calculated for different cities in South Korea, and the usage rates in smaller cities was higher (2-4 times) than the average.


Chemosphere | 2015

Wastewater analysis of Census day samples to investigate per capita input of organophosphorus flame retardants and plasticizers into wastewater

Jake O'Brien; Phong K. Thai; S.H. Brandsma; P.E.G. Leonards; Christoph Ort; Jochen F. Mueller

The use of organophosphate esters (PFRs) as flame retardants and plasticizers has increased due to the ban of some brominated flame retardants. There is however some concern regarding the toxicity, particularly carcinogenicity and neurotoxicity, of some of the PFRs. In this study we applied wastewater analysis to assess use of PFRs by the Australian population. Influent samples were collected from eleven wastewater treatment plants (STPs) in Australia on Census day and analysed for PFRs using gas chromatography coupled with mass spectrometry (GC-MS). Per capita mass loads of PFRs were calculated using the accurate Census head counts. The results indicate that tris(2-butoxyethyl) phosphate (TBOEP) has the highest per capita input into wastewater followed by tris(2-chloroisopropyl) phosphate (TCIPP), tris(isobutyl) phosphate (TIBP), tris(2-chloroethyl) phosphate (TCEP) and tris(1,3-dichloroisopropyl) phosphate (TDCIPP). Similar PFR profiles were observed across the Australian STPs and a comparison with European and U.S. STPs indicated similar PFR concentrations. We estimate that approximately 2.1 mg person(-1) day(-1) of PFRs are input into Australian wastewater which equates to 16 tonnes per annum.


Science of The Total Environment | 2017

The association between particulate air pollution and respiratory admissions among young children in Hanoi, Vietnam.

Ly M.T. Luong; Dung Phung; Peter D. Sly; Lidia Morawska; Phong K. Thai

While the effects of ambient air pollution on health have been studied extensively in many developed countries, few studies have been conducted in Vietnam, where the population is exposed to high levels of airborne particulate matter. The aim of our study was to examine the short-term effects of PM10, PM2.5, and PM1 on respiratory admissions among young children in Hanoi. Data on daily admissions from the Vietnam National Hospital of Paediatrics and daily records of PM10, PM2.5, PM1 and other confounding factors as NO2, SO2, CO, O3 and temperature were collected from September 2010 to September 2011. A time-stratified case-crossover design with individual lag model was applied to evaluate the associations between particulate air pollution and respiratory admissions. Significant effects on daily hospital admissions for respiratory disease were found for PM10, PM2.5 and PM1. An increase in 10μg/m3 of PM10, PM2.5 or PM1 was associated with an increase in risk of admission of 1.4%, 2.2% or 2.5% on the same day of exposure, respectively. No significant difference between the effects on males and females was found in the study. The study demonstrated that infants and young children in Hanoi are at increased risk of respiratory admissions due to the high level of airborne particles in the citys ambient air.


Science of The Total Environment | 2016

Spatial variations in the consumption of illicit stimulant drugs across Australia: A nationwide application of wastewater-based epidemiology

Foon Yin Lai; Jake O'Brien; Raimondo Bruno; Wayne Hall; Jeremy Prichard; K. Paul Kirkbride; Coral Gartner; Phong K. Thai; Steve Carter; Belinda Lloyd; Lucy Burns; Jochen F. Mueller

Obtaining representative information on illicit drug use and patterns across a country remains difficult using surveys because of low response rates and response biases. A range of studies have used wastewater-based epidemiology (WBE) as a complementary approach to monitor community-wide illicit drug use. In Australia, no large-scale WBE studies have been conducted to date to reveal illicit drug use profiles in a national context. In this study, we performed the first Australia-wide WBE monitoring to examine spatial patterns in the use of three illicit stimulants (cocaine, as its human metabolite benzoylecgonine; methamphetamine; and 3,4-methylendioxymethamphetamine (MDMA)). A total of 112 daily composite wastewater samples were collected from 14 wastewater treatment plants across four states and two territories. These covered approximately 40% of the Australian population. We identified and quantified illicit drug residues using liquid chromatography coupled with tandem mass spectrometry. There were distinctive spatial patterns of illicit stimulant use in Australia. Multivariate analyses showed that consumption of cocaine and MDMA was higher in the large cities than in rural areas. Also, cocaine consumption differed significantly between different jurisdictions. Methamphetamine consumption was more similar between urban and rural locations. Only a few cities had elevated levels of use. Extrapolation of the WBE estimates suggested that the annual consumption was 3tonnes for cocaine and 9tonnes combined for methamphetamine and MDMA, which outweighed the annual seizure amount by 25 times and 45 times, respectively. These ratios imply the difficulty of detecting the trafficking of these stimulants in Australia, possibly more so for methamphetamine than cocaine. The obtained spatial pattern of use was compared with that in the most recent national household survey. Together both WBE and survey methods provide a more comprehensive evaluation of drug use that can assist governments in developing policies to reduce drug use and harm in the communities.


Environmental Science & Technology | 2017

Impact of in-Sewer Degradation of Pharmaceutical and Personal Care Products (PPCPs) Population Markers on a Population Model

Jake W. O’Brien; Andrew Banks; Andrew Novic; Jochen F. Mueller; Guangming Jiang; Christoph Ort; Geoff Eaglesham; Zhiguo Yuan; Phong K. Thai

A key uncertainty of wastewater-based epidemiology is the size of the population which contributed to a given wastewater sample. We previously developed and validated a Bayesian inference model to estimate population size based on 14 population markers which: (1) are easily measured and (2) have mass loads which correlate with population size. However, the potential uncertainty of the model prediction due to in-sewer degradation of these markers was not evaluated. In this study, we addressed this gap by testing their stability under sewer conditions and assessed whether degradation impacts the model estimates. Five markers, which formed the core of our model, were stable in the sewers while the others were not. Our evaluation showed that the presence of unstable population markers in the model did not decrease the precision of the population estimates providing that stable markers such as acesulfame remained in the model. However, to achieve the minimum uncertainty in population estimates, we propose that the core markers to be included in population models for other sites should meet two additional criteria: (3) negligible degradation in wastewater to ensure the stability of chemicals during collection; and (4) < 10% in-sewer degradation could occur during the mean residence time of the sewer network.

Collaboration


Dive into the Phong K. Thai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wayne Hall

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Christoph Ort

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jake O'Brien

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Coral Gartner

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge