Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Phyllis F. Knudsen is active.

Publication


Featured researches published by Phyllis F. Knudsen.


The Journal of Neuroscience | 1990

Sensitive and critical periods for visual calibration of sound localization by barn owls

Eric I. Knudsen; Phyllis F. Knudsen

This study describes developmental changes in the capacity of owls to adjust sound localization in response to chronic prismatic displacement of the visual field and to recover accurate sound localization following the restoration of normal vision. Matched, binocular displacing prisms were mounted over the eyes of 19 barn owls (Tyto alba) beginning at ages ranging from 10 to 272 d. In nearly all cases, the visual field was shifted 23 degrees to the right. Sound localization was assessed on the basis of head orientations to sound sources, measured in a darkened sound chamber with a search coil system. Chronic exposure to a displaced visual field caused the owls to alter sound localization in the direction of the visual field displacement, thereby inducing a sound-localization error. The size of the sound-localization error that resulted depended on the age of the animal when prism experience began. Maximal errors of about 20 degrees were induced only when prism experience began by 21 d of age. As prism experience began at later ages, the magnitude of induced errors decreased. A bird that wore prisms beginning at 102 d of age, altered sound localization by only 6 degrees. An adult owl, when exposed chronically to a displaced visual field, altered sound localization by about 3 degrees. We refer to the early period in life when displaced vision induces exceptionally large sound-localization errors (relative to those induced in the adult) as a sensitive period. The capacity to recover accurate sound localization following restoration of normal vision was tested in 7 owls that had been raised wearing prisms. Four owls that had prisms removed by 182 d of age recovered accurate localization rapidly (over a period of weeks), whereas 3 owls that were older when the prisms were removed did not recover accurate localization when tested for up to 7 months after prism removal. Adjustment of sound localization slowed greatly or ceased at about 200 days of age, referred to here as the critical period for visual calibration of sound localization. Three owls were subjected repetitively to displacement of the visual field. An owl that adjusted sound localization to the left of normal during the sensitive period retained the capacity to adjust again to the left, but not to the right of normal, later in the critical period. The converse was true for an owl that adjusted sound localization to the right of normal during the sensitive period.(ABSTRACT TRUNCATED AT 400 WORDS)


The Journal of Neuroscience | 2006

Auditory and Visual Space Maps in the Cholinergic Nucleus Isthmi Pars Parvocellularis of the Barn Owl

Kristin A. Maczko; Phyllis F. Knudsen; Eric I. Knudsen

The nucleus isthmi pars parvocellularis (Ipc) is a midbrain cholinergic nucleus that shares reciprocal, topographic connections with the optic tectum (OT). Ipc neurons project to spatially restricted columns in the OT, contacting essentially all OT layers in a given column. Previous research characterizes the Ipc as a visual processor. We found that, in the barn owl, the Ipc responds to auditory as well as to visual stimuli. Auditory responses were tuned broadly for frequency, but sharply for spatial cues. We measured the tuning of Ipc units to binaural sound localization cues, including interaural timing differences (ITDs) and interaural level differences (ILDs). Units in the Ipc were tuned to specific values of both ITD and ILD and were organized systematically according to their ITD and ILD tuning, forming a map of space. The auditory space map aligned with the visual space map in the Ipc. These results demonstrate that the Ipc encodes the spatial location of objects, independent of stimulus modality. These findings, combined with the precise pattern of projections from the Ipc to the OT, suggest that the role of the Ipc is to regulate the sensitivity of OT neurons in a space-specific manner.


Experimental Brain Research | 1996

Contribution of the forebrain archistriatal gaze fields to auditory orienting behavior in the barn owl

Eric I. Knudsen; Phyllis F. Knudsen

A region in the barn owl forebrain, referred to as the archistriatal gaze fields (AGF), is shown to be involved in auditory orienting behavior. In a previous study, electrical microstimulation of the AGF was shown to produce saccadic movements of the eyes and head, and anatomical data revealed that neurons in the AGF region of the archistriatum project directly to brainstem tegmental nuclei that mediate gaze changes. In this study, we investigated the effects of AGF inactivation on the auditory orienting responses of trained barn owls. The AGF and/or the optic tectum (OT) were inactivated pharmacologically using the GABAA agonist muscimol. Inactivation of the AGF alone had no effect on the probability or accuracy of orienting responses to contralateral acoustic stimuli. Inactivation of the OT alone decreased the probability of responses to contralateral stimuli, but the animals were still capable of orienting accurately toward stimuli on about 60% of the trials. Inactivation of both the AGF and the OT drastically decreased the probability of responses to 16–21% and, on the few trials that the animals did respond, there was no relationship between the final direction of gaze and the location of the stimulus. Thus, with the AGF and OT both inactivated, the animals were no longer capable of orienting accurately toward acoustic stimuli located on the contralateral side. These data confirm that the AGF is involved in gaze control and that the AGF and the OT have parallel access to gaze control circuitry in the brainstem tegmentum. In these respects, the AGF in barn owls is functionally equivalent to the frontal eye fields in primates.


PLOS ONE | 2010

A Dominance Hierarchy of Auditory Spatial Cues in Barn Owls

Ilana B. Witten; Phyllis F. Knudsen; Eric I. Knudsen

Background Barn owls integrate spatial information across frequency channels to localize sounds in space. Methodology/Principal Findings We presented barn owls with synchronous sounds that contained different bands of frequencies (3–5 kHz and 7–9 kHz) from different locations in space. When the owls were confronted with the conflicting localization cues from two synchronous sounds of equal level, their orienting responses were dominated by one of the sounds: they oriented toward the location of the low frequency sound when the sources were separated in azimuth; in contrast, they oriented toward the location of the high frequency sound when the sources were separated in elevation. We identified neural correlates of this behavioral effect in the optic tectum (OT, superior colliculus in mammals), which contains a map of auditory space and is involved in generating orienting movements to sounds. We found that low frequency cues dominate the representation of sound azimuth in the OT space map, whereas high frequency cues dominate the representation of sound elevation. Conclusions/Significance We argue that the dominance hierarchy of localization cues reflects several factors: 1) the relative amplitude of the sound providing the cue, 2) the resolution with which the auditory system measures the value of a cue, and 3) the spatial ambiguity in interpreting the cue. These same factors may contribute to the relative weighting of sound localization cues in other species, including humans.


Science | 1985

Vision guides the adjustment of auditory localization in young barn owls

Eric I. Knudsen; Phyllis F. Knudsen


The Journal of Neuroscience | 1984

Monaural occlusion alters sound localization during a sensitive period in the barn owl

Eric I. Knudsen; Sd Esterly; Phyllis F. Knudsen


The Journal of Neuroscience | 1989

Vision calibrates sound localization in developing barn owls

Eric I. Knudsen; Phyllis F. Knudsen


The Journal of Comparative Neurology | 1983

Space-Mapped auditory projections from the inferior colliculus to the optic tectum in the barn owl (Tyto alba)

Eric I. Knudsen; Phyllis F. Knudsen


The Journal of Neuroscience | 1984

A critical period for the recovery of sound localization accuracy following monaural occlusion in the barn owl

Eric I. Knudsen; Phyllis F. Knudsen; Sd Esterly


The Journal of Neuroscience | 1993

Parallel pathways mediating both sound localization and gaze control in the forebrain and midbrain of the barn owl

Eric I. Knudsen; Phyllis F. Knudsen; Tom Masino

Collaboration


Dive into the Phyllis F. Knudsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge