Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pi-Chun Huang is active.

Publication


Featured researches published by Pi-Chun Huang.


Journal of Vision | 2010

The effects of flankers on contrast detection and discrimination in binocular, monocular, and dichoptic presentations

Goro Maehara; Pi-Chun Huang; Robert F. Hess

We investigated how two co-aligned adjacent stimuli (flankers) influence threshold versus pedestal contrast (TvC) functions in binocular, monocular, and dichoptic presentations. Targets were presented to the two eyes or to only one eye. Pedestals and flankers were presented to the same eye to which the target was presented (binocular or monocular presentations) or to the other eye (dichoptic presentation). In the binocular presentation of targets and pedestals, the binocular flankers lowered thresholds at low pedestal contrasts. The monocular flankers had a similar effect to the binocular flanker, although the threshold reduction was smaller. In the dichoptic presentation of a target and a pedestal, flankers lowered thresholds when flankers were presented to the eye where targets were presented. In contrast, dichoptic flankers elevated thresholds at intermediate pedestal contrasts when a pedestal was also dichoptically presented. We fitted binocular contrast gain control models to the data. It follows from the fitting results that flankers modulate outputs from spatial filters in the monocular processing stage of contrast gain control.


Journal of Vision | 2013

Interocular suppression in amblyopia for global orientation processing

Jiawei Zhou; Pi-Chun Huang; Robert F. Hess

We developed a dichoptic global orientation coherence paradigm to quantify interocular suppression in amblyopia. This task is biased towards ventral processing and allows comparison with two other techniques-global motion processing, which is more dorsally biased, and binocular phase combination, which most likely reflects striate function. We found a similar pattern for the relationship between coherence threshold and interocular contrast curves (thresholds vs. interocular contrast ratios or TvRs) in our new paradigm compared with those of the previous dichoptic global motion coherence paradigm. The effective contrast ratios at balance point (where the signals from the two eyes have equal weighting) in our new paradigm were larger than those of the dichoptic global motion coherence paradigm but less than those of the binocular phase combination paradigm. The measured effective contrast ratios in the three paradigms were also positively correlated with each other, with the two global coherence paradigms having the highest correlation. We concluded that: (a) The dichoptic global orientation coherence paradigm is effective in quantifying interocular suppression in amblyopia; and (b) Interocular suppression, while sharing a common suppression mechanism at the early stage in the pathway (e.g., striate cortex), may have additional extra-striate contributions that affect both dorsal and ventral streams differentially.


Journal of Vision | 2012

Interocular suppression in normal and amblyopic vision:spatio-temporal properties

Pi-Chun Huang; Daniel H. Baker; Robert F. Hess

We measured the properties of interocular suppression in strabismic amblyopes and compared these to dichoptic masking in binocularly normal observers. We used a dichoptic version of the well-established probed-sinewave paradigm that measured sensitivity to a brief target stimulus (one of four letters to be discriminated) in the amblyopic eye at different times relative to a suppression-inducing mask in the fixing eye. This was done using both sinusoidal steady state and transient approaches. The suppression-inducing masks were either modulations of luminance or contrast (full field, just overlaying the target, or just surrounding the target). Our results were interpreted using a descriptive model that included contrast gain control and spatio-temporal filtering prior to excitatory binocular combination. The suppression we measured, other than in magnitude, was not fundamentally different from normal dichoptic masking: lowpass spatio-temporal properties with similar contributions from both surround and overlay suppression.


Journal of Vision | 2012

Collinear facilitation over space and depth.

Pi-Chun Huang; Chien-Chung Chen; Christopher W. Tyler

The detection threshold of a Gabor target can be reduced by the presence of collinear flanking Gabors but is disrupted when the target and the flankers have different disparity. Here, we further investigated whether it is the depth or surface difference between the target and the flanker that causes the abolition of collinear facilitation. The target and the flankers were 1.6 cycle per degree vertical Gabor patches with a separation of three wavelength units between them. There were six viewing conditions: target and flankers were set (A) in the same frontoparallel plane in a collinear configuration, (B) at different disparities but embedded in the same slanted plane, (C) at different disparities in different frontoparallel planes (flankers occupied at the same depth), (D) at different disparities in different frontoparallel planes (flankers occupied at different depth), (E) in the same frontoparallel plane in a noncollinear configuration, and (F) at the same disparity but locally slanted. We measured the target contrast detection threshold with and without the flankers present with a temporal 2AFC paradigm with the Ψ staircase method. Strong collinear facilitation was observed when the target and the flankers were either in the same frontoparallel plane or embedded in the same slanted surface even though the target and the flankers were at different disparities. Our results suggest that it is the difference in surface assignment, not the difference in disparity per se, that causes the disruption of collinear facilitation.


Journal of Vision | 2007

Collinear facilitation in color vision.

Pi-Chun Huang; Kathy T. Mullen; Robert F. Hess

The detection of a luminance-defined Gabor is improved by two high contrast, aligned, flanking Gabors, an effect termed collinear facilitation. We investigate whether this facilitation also occurs for isoluminant chromatic stimuli, and whether it can occur for chromatic targets with luminance flanks and vice versa. We measured collinear facilitation for Gabor stimuli (0.75 cpd, 1 octave bandwidth) of three different contrast types: achromatic, red-green that isolates the L/M-cone opponent mechanism, and blue-yellow that isolates the S-cone opponent mechanism. Three conditions were investigated: (1) target and flanks all of the same contrast type and spatial phase; (2) target and flanks of the same contrast type but opposite phases (0 degrees and 180 degrees ); and (3) target and flanks of different contrast types (chromatic with achromatic contrast) and two opposite phase combinations. We find that a similar degree of collinear facilitation occurs for the isoluminant chromatic stimuli as for the achromatic stimuli, and all exhibit phase dependency. Facilitation did not occur, however, between chromatic and achromatic target and flanking stimuli. This suggests that at the level of collinear facilitation, the chromatic and the achromatic postreceptoral mechanisms have their own spatial interactions that are segregated from one another.


Vision Research | 2009

Importance of phase alignment for interocular suppression

Goro Maehara; Pi-Chun Huang; Robert F. Hess

We measured contrast thresholds for Gabor targets in the presence of maskers which had higher or lower spatial frequencies than the targets. A high-pass fractal masker elevated target contrast thresholds at low and intermediate pedestal contrasts in both monocular and dichoptic modes of presentation, suggesting that the masking occurs after a monocular processing stage. Moreover we found that a high-pass checkerboard masker elevated thresholds at the low and intermediate pedestal contrasts and that most of this threshold elevation disappeared when the phase of the maskers spatial components were scrambled. This masking was effective only in the dichoptic presentation, not in the monocular presentation. These results indicate that phase alignment of the high spatial frequency components plays a crucial role for interocular suppression. We speculate that phase alignments signal the existence of a luminance contour in the monocular image and that this signal suppresses processing of information in the other eye when there is no corresponding signal in that eye.


Vision Research | 2008

The dynamics of collinear facilitation : Fast but sustained

Pi-Chun Huang; Robert F. Hess

The mechanism by which flanking Gabors facilitate the detection of a central test Gabor is not well understood. Since a knowledge of the dynamics of this effect will help constrain the class of possible model, we conducted three different but interrelated experiments designed to assess different aspects of the dynamics associated with this facilitation. In experiment 1, collinear facilitation was measured at different onset times of a test target for flanks whose contrast was sinusoidally-modulated at 1 Hz. In experiment 2, the order between test target and flanks was investigated by varying the SOA, both stimuli being presented for 50 ms. Experiment 3 assessed temporal summation with and without the flanks. The results obtained do not support either a single channel masking explanation which predicts transient dynamics or an explanation-based solely on the conduction of facilitatory impulses from flanks to target via long-range horizontal connections which predicts transient but delayed dynamics. The results suggest that the dynamics of facilitation are fast but sustained. We propose two underlying mechanisms, a rapid signal to initiate facilitation across large retinal distances, based on feedback from higher centers and a sustained facilitative response based on the temporal integration of locally-responsive, lower-level mechanisms.


Vision Research | 2007

Collinear facilitation: Effect of additive and multiplicative external noise

Pi-Chun Huang; Robert F. Hess

The detectability of a Gabor patch is improved by the presence of collinear flanking Gabors, this phenomenon is termed collinear facilitation. In experiment 1, we investigate the effects of adding 2D spatial luminance noise as a means of investigating different transects through the suprathreshold contrast space to see whether facilitation is ubiquitous throughout the contrast domain or whether it is confined to absolute contrast threshold. The results show that adding luminance noise abolishes the facilitation, showing it is confined to absolute threshold. In experiment 2, we assess whether 2nd order stimuli exhibit collinear facilitation and whether 1st order flanks can induce facilitation in 2nd order stimuli and vice versa. Our results suggest that collinear facilitation, albeit weaker, does occur for some 2nd order stimuli but we did not find any 1st/2nd order interactions, suggesting separate 1st/2nd order cortical processing streams, at least at the level at which this phenomenon occurs. Our two main findings, namely the lack of facilitation at suprathreshold contrasts and its presence for 2nd order processing argue against it playing a pivotal role in contour integration which does occur at all contrasts but not for these 2nd order stimuli.


Scientific Reports | 2016

When "bouba" equals "kiki": Cultural commonalities and cultural differences in sound-shape correspondences

Yi Chuan Chen; Pi-Chun Huang; Andy T. Woods; Charles Spence

It has been suggested that the Bouba/Kiki effect, in which meaningless speech sounds are systematically mapped onto rounded or angular shapes, reflects a universal crossmodal correspondence between audition and vision. Here, radial frequency (RF) patterns were adapted in order to compare the Bouba/Kiki effect in Eastern and Western participants demonstrating different perceptual styles. Three attributes of the RF patterns were manipulated: The frequency, amplitude, and spikiness of the sinusoidal modulations along the circumference of a circle. By testing participants in the US and Taiwan, both cultural commonalities and differences in sound-shape correspondence were revealed. RF patterns were more likely to be matched with “Kiki” than with “Bouba” when the frequency, amplitude, and spikiness increased. The responses from both groups of participants had a similar weighting on frequency; nevertheless, the North Americans had a higher weighting on amplitude, but a lower weighting on spikiness, than their Taiwanese counterparts. These novel results regarding cultural differences suggest that the Bouba/Kiki effect is partly tuned by differing perceptual experience. In addition, using the RF patterns in the Bouba/Kiki effect provides a “mid-level” linkage between visual and auditory processing, and a future understanding of sound-shape correspondences based on the mechanism of visual pattern processing.


Journal of Vision | 2012

Pattern masking: The importance of remote spatial frequencies and their phase alignment

Pi-Chun Huang; Goro Maehara; Keith A. May; Robert F. Hess

To assess the effects of spatial frequency and phase alignment of mask components in pattern masking, target threshold vs. mask contrast (TvC) functions for a sine-wave grating (S) target were measured for five types of mask: a sine-wave grating (S), a square-wave grating (Q), a missing fundamental square-wave grating (M), harmonic complexes consisting of phase-scrambled harmonics of a square wave (Qp), and harmonic complexes consisting of phase-scrambled harmonics of a missing fundamental square wave (Mp). Target and masks had the same fundamental frequency (0.46 cpd) and the target was added in phase with the fundamental frequency component of the mask. Under monocular viewing conditions, the strength of masking depends on phase relationships among mask spatial frequencies far removed from that of the target, at least 3 times the target frequency, only when there are common target and mask spatial frequencies. Under dichoptic viewing conditions, S and Q masks produced similar masking to each other and the phase-scrambled masks (Qp and Mp) produced less masking. The results suggest that pattern masking is spatial frequency broadband in nature and sensitive to the phase alignments of spatial components.

Collaboration


Dive into the Pi-Chun Huang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chien-Chung Chen

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven C. Dakin

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge