Piera Smeriglio
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Piera Smeriglio.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Vanessa Besson; Piera Smeriglio; Amélie Wegener; Frédéric Relaix; Brahim Nait Oumesmar; David Sassoon; Giovanna Marazzi
A variety of markers are invaluable for identifying and purifying stem/progenitor cells. Here we report the generation of a murine reporter line driven by Pw1 that reveals cycling and quiescent progenitor/stem cells in all adult tissues thus far examined, including the intestine, blood, testis, central nervous system, bone, skeletal muscle, and skin. Neurospheres generated from the adult PW1-reporter mouse show near 100% reporter-gene expression following a single passage. Furthermore, epidermal stem cells can be purified solely on the basis of reporter-gene expression. These cells are clonogenic, repopulate the epidermal stem-cell niches, and give rise to new hair follicles. Finally, we demonstrate that only PW1 reporter-expressing epidermal cells give rise to follicles that are capable of self-renewal following injury. Our data demonstrate that PW1 serves as an invaluable marker for competent self-renewing stem cells in a wide array of adult tissues, and the PW1-reporter mouse serves as a tool for rapid stem cell isolation and characterization.
Arthritis & Rheumatism | 2014
Sarah E. B. Taylor; Piera Smeriglio; Lakshmi Dhulipala; Madhusikta Rath; Nidhi Bhutani
To investigate the role of the newly discovered epigenetic mark 5‐hydroxymethylcytosine (5hmC) and its regulators in altered gene expression in osteoarthritis (OA).
The FASEB Journal | 2015
Jieun Lee; Sarah E. B. Taylor; Piera Smeriglio; Janice Lai; William J. Maloney; Fan Yang; Nidhi Bhutani
Regeneration of human cartilage is inherently inefficient; an abundant autologous source, such as human induced pluripotent stem cells (hiPSCs), is therefore attractive for engineering cartilage. We report a growth factor‐based protocol for differentiating hiPSCs into articular‐like chondrocytes (hiChondrocytes) within 2 weeks, with an overall efficiency >90%. The hiChondrocytes are stable and comparable to adult articular chondrocytes in global gene expression, extracellular matrix production, and ability to generate cartilage tissue in vitro and in immune‐deficient mice. Molecular characterization identified an early SRY (sex‐determining region Y) box (Sox)9low cluster of differentiation (CD)44lowCD140low prechondrogenic population during hiPSC differentiation. In addition, 2 distinct Sox9‐regulated gene networks were identified in the Sox9low and Sox9high populations providing novel molecular insights into chondrogenic fate commitment and differentiation. Our findings present a favorable method for generating hiPSC‐derived articular‐like chondrocytes. The hiChondrocytes are an attractive cell source for cartilage engineering because of their abundance, autologous nature, and potential to generate articular‐like cartilage rather than fibrocartilage. In addition, hiChondrocytes can be excellent tools for modeling human musculoskeletal diseases in a dish and for rapid drug screening.—Lee, J., Taylor, S. E. B., Smeriglio, P., Lai, J., Maloney, W. J., Yang, F., Bhutani, N. Early induction of a prechondrogenic population allows efficient generation of stable chondrocytes from human induced pluripotent stem cells. FASEB J. 29, 3399‐3410 (2015). www.fasebj.org
Journal of Bone and Mineral Research | 2016
Sarah E. B. Taylor; Ye Henry Li; Piera Smeriglio; Madhusikta Rath; Wing Hung Wong; Nidhi Bhutani
Regulation of gene expression changes during chondrogenic differentiation by DNA methylation and demethylation is little understood. Methylated cytosines (5mC) are oxidized by the ten-eleven-translocation (TET) proteins to 5-hydroxymethylcytosines (5hmC), 5-formylcytosines (5fC), and 5-carboxylcytosines (5caC), eventually leading to a replacement by unmethylated cytosines (C), ie, DNA demethylation. Additionally, 5hmC is stable and acts as an epigenetic mark by itself. Here, we report that global changes in 5hmC mark chondrogenic differentiation in vivo and in vitro. Tibia anlagen and growth plate analyses during limb development at mouse embryonic days E 11.5, 13.5, and 17.5 showed dynamic changes in 5hmC levels in the differentiating chondrocytes. A similar increase in 5hmC levels was observed in the ATDC5 chondroprogenitor cell line accompanied by increased expression of the TET proteins during in vitro differentiation. Loss of TET1 in ATDC5 decreased 5hmC levels and impaired differentiation, demonstrating a functional role for TET1-mediated 5hmC dynamics in chondrogenic differentiation. Global analyses of the 5hmC-enriched sequences during early and late chondrogenic differentiation identified 5hmC distribution to be enriched in the regulatory regions of genes preceding the transcription start site (TSS), as well as in the gene bodies. Stable gains in 5hmC were observed in specific subsets of genes, including genes associated with cartilage development and in chondrogenic lineage-specific genes. 5hmC gains in regulatory promoter and enhancer regions as well as in gene bodies were strongly associated with activated but not repressed genes, indicating a potential regulatory role for DNA hydroxymethylation in chondrogenic gene expression.
Tissue Engineering Part A | 2015
Piera Smeriglio; Janice H. Lai; Lakshmi Dhulipala; Anthony W. Behn; Stuart B. Goodman; R. L. Smith; William J. Maloney; Fan Yang; Nidhi Bhutani
Regeneration of human articular cartilage is inherently limited and extensive efforts have focused on engineering the cartilage tissue. Various cellular sources have been studied for cartilage tissue engineering including adult chondrocytes, and embryonic or adult stem cells. Juvenile chondrocytes (from donors below 13 years of age) have recently been reported to be a promising cell source for cartilage regeneration. Previous studies have compared the potential of adult and juvenile chondrocytes or adult and osteoarthritic (OA) chondrocytes. To comprehensively characterize the comparative potential of young, old, and diseased chondrocytes, here we examined cartilage formation by juvenile, adult, and OA chondrocytes in three-dimensional (3D) biomimetic hydrogels composed of poly(ethylene glycol) and chondroitin sulfate. All three human articular chondrocytes were encapsulated in the 3D biomimetic hydrogels and cultured for 3 or 6 weeks to allow maturation and extracellular matrix formation. Outcomes were analyzed using quantitative gene expression, immunofluorescence staining, biochemical assays, and mechanical testing. After 3 and 6 weeks, juvenile chondrocytes showed a greater upregulation of chondrogenic gene expression than adult chondrocytes, while OA chondrocytes showed a downregulation. Aggrecan and type II collagen deposition and glycosaminoglycan accumulation were high for juvenile and adult chondrocytes but not for OA chondrocytes. Similar trend was observed in the compressive moduli of the cartilage constructs generated by the three different chondrocytes. In conclusion, the juvenile, adult and OA chondrocytes showed differential responses in the 3D biomimetic hydrogels. The 3D culture model described here may also provide a useful tool to further study the molecular differences among chondrocytes from different stages, which can help elucidate the mechanisms for age-related decline in the intrinsic capacity for cartilage repair.
Pflügers Archiv: European Journal of Physiology | 2014
Giulia Maria Camerino; Marina Bouché; Michela De Bellis; Maria Cannone; Antonella Liantonio; Kejla Musaraj; Rossella Romano; Piera Smeriglio; Luca Madaro; Arcangela Giustino; Annamaria De Luca; Jean François Desaphy; Diana Conte Camerino; Sabata Pierno
In skeletal muscle, the resting chloride conductance (gCl), due to the ClC-1 chloride channel, controls the sarcolemma electrical stability. Indeed, loss-of-function mutations in ClC-1 gene are responsible of myotonia congenita. The ClC-1 channel can be phosphorylated and inactivated by protein kinases C (PKC), but the relative contribution of each PKC isoforms is unknown. Here, we investigated on the role of PKCθ in the regulation of ClC-1 channel expression and activity in fast- and slow-twitch muscles of mouse models lacking PKCθ. Electrophysiological studies showed an increase of gCl in the PKCθ-null mice with respect to wild type. Muscle excitability was reduced accordingly. However, the expression of the ClC-1 channel, evaluated by qRT-PCR, was not modified in PKCθ-null muscles suggesting that PKCθ affects the ClC-1 activity. Pharmacological studies demonstrated that although PKCθ appreciably modulates gCl, other isoforms are still active and concur to this role. The modification of gCl in PKCθ-null muscles has caused adaptation of the expression of phenotype-specific genes, such as calcineurin and myocyte enhancer factor-2, supporting the role of PKCθ also in the settings of muscle phenotype. Importantly, the lack of PKCθ has prevented the aging-related reduction of gCl, suggesting that its modulation may represent a new strategy to contrast the aging process.
Tissue Engineering Part A | 2015
Piera Smeriglio; Lakshmi Dhulipala; Janice H. Lai; Stuart B. Goodman; Jason L. Dragoo; R. L. Smith; William J. Maloney; Fan Yang; Nidhi Bhutani
Regeneration of human cartilage is inherently inefficient. Current cell-based approaches for cartilage repair, including autologous chondrocytes, are limited by the paucity of cells, associated donor site morbidity, and generation of functionally inferior fibrocartilage rather than articular cartilage. Upon investigating the role of collagen VI (Col VI), a major component of the chondrocyte pericellular matrix (PCM), we observe that soluble Col VI stimulates chondrocyte proliferation. Interestingly, both adult and osteoarthritis chondrocytes respond to soluble Col VI in a similar manner. The proliferative effect is, however, strictly due to the soluble Col VI as no proliferation is observed upon exposure of chondrocytes to immobilized Col VI. Upon short Col VI treatment in 2D monolayer culture, chondrocytes maintain high expression of characteristic chondrocyte markers like Col2a1, agc, and Sox9 whereas the expression of the fibrocartilage marker Collagen I (Col I) and of the hypertrophy marker Collagen X (Col X) is minimal. Additionally, Col VI-expanded chondrocytes show a similar potential to untreated chondrocytes in engineering cartilage in 3D biomimetic hydrogel constructs. Our study has, therefore, identified soluble Col VI as a biologic that can be useful for the expansion and utilization of scarce sources of chondrocytes, potentially for autologous chondrocyte implantation. Additionally, our results underscore the importance of further investigating the changes in chondrocyte PCM with age and disease and the subsequent effects on chondrocyte growth and function.
Tissue Engineering Part A | 2016
Sarah E. B. Taylor; Jieun Lee; Piera Smeriglio; Adnan Razzaque; R. L. Smith; Jason L. Dragoo; William J. Maloney; Nidhi Bhutani
Although regeneration of human cartilage is inherently inefficient, age is an important risk factor for osteoarthritis. Recent reports have provided compelling evidence that juvenile chondrocytes (from donors below 13 years of age) are more efficient at generating articular cartilage as compared to adult chondrocytes. However, the molecular basis for such a superior regenerative capability is not understood. To identify the cell-intrinsic differences between juvenile and adult cartilage, we have systematically profiled global gene expression changes between a small cohort of human neonatal/juvenile and adult chondrocytes. No such study is available for human chondrocytes although young and old bovine and equine cartilage have been recently profiled. Our studies have identified and validated new factors enriched in juvenile chondrocytes as compared to adult chondrocytes including secreted extracellular matrix factors chordin-like 1 (CHRDL1) and microfibrillar-associated protein 4 (MFAP4). Network analyses identified cartilage development pathways, epithelial-mesenchymal transition, and innate immunity pathways to be overrepresented in juvenile-enriched genes. Finally, CHRDL1 was observed to aid the proliferation and survival of bone marrow-derived human mesenchymal stem cells (hMSC) while maintaining their stem cell potential. These studies, therefore, provide a mechanism for how young cartilage factors can potentially enhance stem cell function in cartilage repair.
Journal of Visualized Experiments | 2015
Piera Smeriglio; Janice H. Lai; Fan Yang; Nidhi Bhutani
Human articular cartilage is highly susceptible to damage and has limited self-repair and regeneration potential. Cell-based strategies to engineer cartilage tissue offer a promising solution to repair articular cartilage. To select the optimal cell source for tissue repair, it is important to develop an appropriate culture platform to systematically examine the biological and biomechanical differences in the tissue-engineered cartilage by different cell sources. Here we applied a three-dimensional (3D) biomimetic hydrogel culture platform to systematically examine cartilage regeneration potential of juvenile, adult, and osteoarthritic (OA) chondrocytes. The 3D biomimetic hydrogel consisted of synthetic component poly(ethylene glycol) and bioactive component chondroitin sulfate, which provides a physiologically relevant microenvironment for in vitro culture of chondrocytes. In addition, the scaffold may be potentially used for cell delivery for cartilage repair in vivo. Cartilage tissue engineered in the scaffold can be evaluated using quantitative gene expression, immunofluorescence staining, biochemical assays, and mechanical testing. Utilizing these outcomes, we were able to characterize the differential regenerative potential of chondrocytes of varying age, both at the gene expression level and in the biochemical and biomechanical properties of the engineered cartilage tissue. The 3D culture model could be applied to investigate the molecular and functional differences among chondrocytes and progenitor cells from different stages of normal or aberrant development.
Arthritis Research & Therapy | 2016
Jieun Lee; Piera Smeriglio; Jason L. Dragoo; William J. Maloney; Nidhi Bhutani
BackgroundDiseases associated with human cartilage, including rheumatoid arthritis (RA) and osteoarthritis (OA) have manifested age, mechanical stresses and inflammation as the leading risk factors. Although inflammatory processes are known to be upregulated upon aging, we sought to gain a molecular understanding of how aging affects the tissue-specific response to inflammation. In this report, we explored the role of cluster of differentiation 24 (CD24) in regulating differential inflammatory responses in juvenile and adult human chondrocytes.MethodsDifferential cell-surface CD24 expression was assessed in juvenile and adult chondrocytes along with human induced pluripotent stem cell (hiPSC)-derived neonatal chondrocytes through gene expression and fluorescence-activated cell sorting (FACS) analyses. Loss of function of CD24 was achieved through silencing in chondrocytes and the effects on the response to inflammatory cues were assessed through gene expression and NFκB activity.ResultsCD24 expression in chondrocytes caused a differential response to cytokine-induced inflammation, with the CD24high juvenile chondrocytes being resistant to IL-1ß treatment as compared to CD24low adult chondrocytes. CD24 protects from inflammatory response by reducing NFκB activation, as an acute loss of CD24 via silencing led to an increase in NFκB activation. Moreover, the loss of CD24 in chondrocytes subsequently increased inflammatory and catabolic gene expression both in the absence and presence of IL-1ß.ConclusionsWe have identified CD24 as a novel regulator of inflammatory response in cartilage that is altered during development and aging and could potentially be therapeutic in RA and OA.