Pierre Affaticati
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pierre Affaticati.
Nature Communications | 2016
Emmanuel Faure; Thierry Savy; Barbara Rizzi; Camilo Melani; Olga Stašová; Dimitri Fabrèges; Róbert Špir; Mark Hammons; Róbert Čunderlík; Gaëlle Recher; Benoit Lombardot; Louise Duloquin; Ingrid Colin; Jozef Kollár; Sophie Desnoulez; Pierre Affaticati; Benoit Maury; Adeline Boyreau; Jean-Yves Nief; Pascal Calvat; Philippe Vernier; Monique Frain; Georges Lutfalla; Yannick L. Kergosien; Pierre Suret; Mariana Remešíková; René Doursat; Alessandro Sarti; Karol Mikula; Nadine Peyriéras
The quantitative and systematic analysis of embryonic cell dynamics from in vivo 3D+time image data sets is a major challenge at the forefront of developmental biology. Despite recent breakthroughs in the microscopy imaging of living systems, producing an accurate cell lineage tree for any developing organism remains a difficult task. We present here the BioEmergences workflow integrating all reconstruction steps from image acquisition and processing to the interactive visualization of reconstructed data. Original mathematical methods and algorithms underlie image filtering, nucleus centre detection, nucleus and membrane segmentation, and cell tracking. They are demonstrated on zebrafish, ascidian and sea urchin embryos with stained nuclei and membranes. Subsequent validation and annotations are carried out using Mov-IT, a custom-made graphical interface. Compared with eight other software tools, our workflow achieved the best lineage score. Delivered in standalone or web service mode, BioEmergences and Mov-IT offer a unique set of tools for in silico experimental embryology.
Endocrinology | 2013
Romain Fontaine; Pierre Affaticati; Kei Yamamoto; Cécile Jolly; Charlotte Bureau; Sylvie Baloche; Françoise Gonnet; Philippe Vernier; Sylvie Dufour; Catherine Pasqualini
In many teleosts, the stimulatory control of gonadotrope axis by GnRH is opposed by an inhibitory control by dopamine (DA). The functional importance of this inhibitory pathway differs widely from one teleostean species to another. The zebrafish (Danio rerio) is a teleost fish that has become increasingly popular as an experimental vertebrate model. However, the role of DA in the neuroendocrine control of its reproduction has never been studied. Here the authors evaluated in sexually regressed female zebrafish the effects of in vivo treatments with a DA D2 receptor (D2-R) antagonist domperidone, or a GnRH agonist, alone and in combination, on the pituitary level of FSHβ and LHβ transcripts, the gonadosomatic index, and the ovarian histology. Only the double treatment with GnRH agonist and domperidone could induce an increase in the expression of LHβ, in the gonadosomatic index, and a stimulation of ovarian vitellogenesis, indicating that removal of dopaminergic inhibition is required for the stimulatory action of GnRH and reactivation of ovarian function to occur. Using double immunofluorescent staining on pituitary, the authors showed in this species the innervation of LH cells by tyrosine-hydroxylase immunoreactive fibers. Finally, using in situ hybridization and immunofluorescence, the authors showed that the three subtypes of zebrafish DA D2-R (D2a, D2b, and D2c) were expressed in LH-producing cells, suggesting that they all may be involved in mediating this inhibition. These results show for the first time that, in zebrafish, DA has a direct and potent inhibitory action capable of opposing the stimulatory effect of GnRH in the neuroendocrine control of reproduction.
Development | 2013
Adriana Bosco; Charlotte Bureau; Pierre Affaticati; Patricia Gaspar; Laure Bally-Cuif; Christina Lillesaar
Serotonin is a monoamine neurotransmitter that is involved in numerous physiological functions and its dysregulation is implicated in various psychiatric diseases. In all non-placental vertebrates, serotoninergic (5-HT) neurons are present in several regions of the brain, including the hypothalamus. In placental mammals, however, 5-HT neurons are located in the raphe nuclei only. In all species, though, 5-HT neurons constitute a functionally and molecularly heterogeneous population. How the non-raphe 5-HT populations are developmentally encoded is unknown. Using the zebrafish model we show that, in contrast to the raphe populations, hypothalamic 5-HT neurons are generated independently of the ETS-domain transcription factor Pet1 (Fev). By applying a combination of pharmacological tools and gene knockdown and/or overexpression experiments, we demonstrate that Fgf signalling acts via another ETS-domain transcription factor, Etv5b (Erm), to induce hypothalamic 5-HT neurons. We provide evidence that Etv5b exerts its effects by regulating cell cycle parameters in 5-HT progenitors. Our results highlight a novel role for Etv5b in neuronal development and provide support for the existence of a developmental heterogeneity among 5-HT neurons in their requirement for ETS-domain transcription factors.
Scientific Reports | 2017
Jean-Baptiste Fini; Bilal B. Mughal; Sébastien Le Mével; Michelle Leemans; Mélodie Lettmann; Petra Spirhanzlova; Pierre Affaticati; Arnim Jenett; Barbara A. Demeneix
Thyroid hormones are essential for normal brain development in vertebrates. In humans, abnormal maternal thyroid hormone levels during early pregnancy are associated with decreased offspring IQ and modified brain structure. As numerous environmental chemicals disrupt thyroid hormone signalling, we questioned whether exposure to ubiquitous chemicals affects thyroid hormone responses during early neurogenesis. We established a mixture of 15 common chemicals at concentrations reported in human amniotic fluid. An in vivo larval reporter (GFP) assay served to determine integrated thyroid hormone transcriptional responses. Dose-dependent effects of short-term (72 h) exposure to single chemicals and the mixture were found. qPCR on dissected brains showed significant changes in thyroid hormone-related genes including receptors, deiodinases and neural differentiation markers. Further, exposure to mixture also modified neural proliferation as well as neuron and oligodendrocyte size. Finally, exposed tadpoles showed behavioural responses with dose-dependent reductions in mobility. In conclusion, exposure to a mixture of ubiquitous chemicals at concentrations found in human amniotic fluid affect thyroid hormone-dependent transcription, gene expression, brain development and behaviour in early embryogenesis. As thyroid hormone signalling is strongly conserved across vertebrates the results suggest that ubiquitous chemical mixtures could be exerting adverse effects on foetal human brain development.
Scientific Reports | 2015
Pierre Affaticati; Kei Yamamoto; Barbara Rizzi; Charlotte Bureau; Nadine Peyriéras; Catherine Pasqualini; Michaël Demarque; Philippe Vernier
Regionalization is a critical, highly conserved step in the development of the vertebrate brain. Discrepancies exist in how regionalization of the anterior vertebrate forebrain is conceived since the “preoptic area” is proposed to be a part of the telencephalon in tetrapods but not in teleost fish. To gain insight into this complex morphogenesis, formation of the anterior forebrain was analyzed in 3D over time in zebrafish embryos, combining visualization of proliferation and differentiation markers, with that of developmental genes. We found that the region containing the preoptic area behaves as a coherent morphogenetic entity, organized around the optic recess and located between telencephalon and hypothalamus. This optic recess region (ORR) makes clear borders with its neighbor areas and expresses a specific set of genes (dlx2a, sim1a and otpb). We thus propose that the anterior forebrain (secondary prosencephalon) in teleosts contains three morphogenetic entities (telencephalon, ORR and hypothalamus), instead of two (telencephalon and hypothalamus). The ORR in teleosts could correspond to “telencephalic stalk area” and “alar hypothalamus” in tetrapods, resolving current inconsistencies in the comparison of basal forebrain among vertebrates.
Zebrafish | 2015
Sandra Noble; Rafael Godoy; Pierre Affaticati; Marc Ekker
Genetic mutations and environmental toxins are known to affect mitochondrial health and have been implicated in the progressive degeneration of dopaminergic neurons in Parkinsons disease. To visualize mitochondria in dopaminergic neurons of live zebrafish, we used the regulatory elements of the dopamine transporter (dat) gene to target a reporter, mCherry, after fusion with the mitochondrial localizing signal (MLS) of Tom20. Immunoblot analysis of mitochondrial and cytosolic fractions from Tg(dat:tom20 MLS-mCherry) larvae shows that mCherry is efficiently targeted to the mitochondria. Confocal imaging of live fish was carried out from 1 day postfertilization (dpf) to 9 dpf. We also colocalized dat mRNA expression with the mCherry protein in the olfactory bulb (OB), subpallium (SP), pretectum (Pr), diencephalic clusters 2 and 3 (DC2/3), caudal hypothalamus (Hc), locus coeruleus (LC), anterior preoptic area (POa), retinal amacrine cells (RAC), caudal hypothalamus (Hc), and preoptic area (PO). Treating Tg(dat:tom20 MLS-mCherry) larvae with the dopaminergic neurotoxin MPTP (1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine) at 2 or 3 dpf resulted in a decrease in mCherry fluorescence in the pretectum, olfactory bulb, subpallium, diencephalic clusters 2 and 3, and the caudal hypothalamus. Labeling of mitochondria in nigrostriatal dopaminergic neurons of zebrafish could allow their visualization in vivo following genetic or pharmacological manipulations.
The Journal of Comparative Neurology | 2017
Anna L. Xavier; Romain Fontaine; Solal Bloch; Pierre Affaticati; Arnim Jenett; Michaël Demarque; Philippe Vernier; Kei Yamamoto
Cerebrospinal fluid‐contacting (CSF‐c) cells containing monoamines such as dopamine (DA) and serotonin (5‐HT) occur in the periventricular zones of the hypothalamic region of most vertebrates except for placental mammals. Here we compare the organization of the CSF‐c cells in chicken, Xenopus, and zebrafish, by analyzing the expression of synthetic enzymes of DA and 5‐HT, respectively, tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH), and draw an evolutionary scenario for this cell population. Due to the lack of TH immunoreactivity in this region, the hypothalamic CSF‐c cells have been thought to take up DA from the ventricle instead of synthesizing it. We demonstrate that a second TH gene (TH2) is expressed in the CSF‐c cells of all the three species, suggesting that these cells do indeed synthetize DA. Furthermore, we found that many CSF‐c cells coexpress TH2 and TPH1 and contain both DA and 5‐HT, a dual neurotransmitter phenotype hitherto undescribed in the brain of any vertebrate. The similarities of CSF‐c cells in chicken, Xenopus, and zebrafish suggest that these characteristics are inherited from the common ancestor of the Osteichthyes. A significant difference between tetrapods and teleosts is that teleosts possess an additional CSF‐c cell population around the posterior recess (PR) that has emerged in specific groups of Actinopterygii. Our comparative analysis reveals that the hypothalamus in mammals and teleosts has evolved in a divergent manner: placental mammals have lost the monoaminergic CSF‐c cells, while teleosts have increased their relative number.
Scientific Reports | 2017
Maxence Frétaud; Laurie Rivière; Elodie De Job; Jean-Jacques Lareyre; Jean-Stéphane Joly; Pierre Affaticati; Violette Thermes
Zebrafish testis has become a powerful model for reproductive biology of teleostean fishes and other vertebrates and encompasses multiple applications in applied and basic research. Many studies have focused on 2D images, which is time consuming and implies extrapolation of results. Three-dimensional imaging of whole organs recently became an important challenge to better understand their architecture and allow cell enumeration. Several protocols have thus been developed to enhance sample transparency, a limiting step for imaging large biological samples. However, none of these methods has been applied to the zebrafish testis. We tested five clearing protocols to determine if some of them could be applied with only small modifications to the testis. We compared clearing efficiency at both macroscopic and microscopic levels. CUBIC and PACT were suitable for an efficient transparency, an optimal optical penetration, the GFP fluorescence preservation and avoiding meaningful tissue deformation. Finally, we succeeded in whole testis 3D capture at a cellular resolution with both CUBIC and PACT, which will be valuable in a standard workflow to investigate the 3D architecture of the testis and its cellular content. This paves the way for further development of high content phenotyping studies in several fields including development, genetic or toxicology.
Stem Cells | 2017
Emilie Dambroise; Matthieu Simion; Thomas Bourquard; Stéphanie Bouffard; Barbara Rizzi; Yan Jaszczyszyn; Mickael Bourge; Pierre Affaticati; Aurélie Heuzé; Julia Jouralet; Joanne Edouard; Spencer Brown; Claude Thermes; Anne Poupon; Eric Reiter; Frédéric Sohm; Franck Bourrat; Jean-Stéphane Joly
In mammals, neuroepithelial cells play an essential role in embryonic neurogenesis, whereas glial stem cells are the principal source of neurons at postembryonic stages. By contrast, neuroepithelial‐like stem/progenitor (NE) cells have been shown to be present throughout life in teleosts. We used three‐dimensional (3D) reconstructions of cleared transgenic wdr12:GFP medaka brains to demonstrate that this cell type is widespread in juvenile and to identify new regions containing NE cells. We established the gene expression profile of optic tectum (OT) NE cells by cell sorting followed by RNA‐seq. Our results demonstrate that most OT NE cells are indeed active stem cells and that some of them exhibit long G2 phases. We identified several novel pathways (e.g., DNA repair pathways) potentially involved in NE cell homeostasis. In situ hybridization studies showed that all NE populations in the postembryonic medaka brain have a similar molecular signature. Our findings highlight the importance of NE progenitors in medaka and improve our understanding of NE‐cell biology. These cells are potentially useful not only for neural stem cell studies but also for improving the characterization of neurodevelopmental diseases, such as microcephaly. Stem Cells 2017;35:1505–1518
Disease Models & Mechanisms | 2017
Gabriella Passoni; Christelle Langevin; Nuno Palha; Bryan C. Mounce; Valérie Briolat; Pierre Affaticati; Elodie De Job; Jean-Stéphane Joly; Marco Vignuzzi; Maria-Carla Saleh; Philippe Herbomel; Pierre Boudinot; Jean-Pierre Levraud
ABSTRACT Alphaviruses, such as chikungunya virus (CHIKV) and Sindbis virus (SINV), are vector-borne pathogens that cause acute illnesses in humans and are sometimes associated with neuropathies, especially in infants and elderly patients. Little is known about their mechanism of entry into the central nervous system (CNS), even for SINV, which has been used extensively as a model for viral encephalopathies. We previously established a CHIKV infection model in the optically transparent zebrafish larva; here we describe a new SINV infection model in this host. We imaged in vivo the onset and progression of the infection caused by intravenous SINV inoculation. Similar to that described for CHIKV, infection in the periphery was detected early and was transient, whereas CNS infection started at later time points and was persistent or progressive. We then tested the possible mechanisms of neuroinvasion by CHIKV and SINV. Neither virus relied on macrophage-mediated transport to access the CNS. CHIKV, but not SINV, always infects endothelial cells of the brain vasculature. By contrast, axonal transport was much more efficient with SINV than CHIKV, both from the periphery to the CNS and between neural tissues. Thus, the preferred mechanisms of neuroinvasion by these two related viruses are distinct, providing a powerful imaging-friendly system to compare mechanisms and prevention methods of encephalopathies. Summary: Imaging of neuroinvasion in zebrafish shows that chikungunya virus first infects the blood-brain barrier, whereas Sindbis virus relies on axonal transport.