Pierre Czernic
University of Montpellier
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pierre Czernic.
Annals of Botany | 2009
Catherine Curie; Gaëlle Cassin; Daniel Couch; Fanchon Divol; Kyoko Higuchi; Marie Le Jean; Julie Misson; Adam Schikora; Pierre Czernic; Stéphane Mari
Background Since the identification of the genes controlling the root acquisition of iron (Fe), the control of inter- and intracellular distribution has become an important challenge in understanding metal homeostasis. The identification of the yellow stripe-like (YSL) transporter family has paved the way to decipher the mechanisms of long-distance transport of Fe. Scope Once in the plant, Fe will systematically react with organic ligands whose identity is poorly known so far. Among potential ligands, nicotianamine has been identified as an important molecule for the circulation and delivery of metals since it participates in the loading of copper (Cu) and nickel in xylem and prevents Fe precipitation in leaves. Nicotianamine is a precursor of phytosiderophores, which are high-affinity Fe ligands exclusively synthesized by Poaceae species and excreted by roots for the chelation and acquisition of Fe. Maize YS1 is the founding member of a family of membrane transporters called YS1-like (YSL), which functions in root Fe-phytosiderophore uptake from the soil. Next to this well-known Fe acquisition role, most of the other YSL family members are likely to function in plant-wide distribution of metals since (a) they are produced in vascular tissues throughout the plant and (b) they are found in non-Poaceae species that do not synthesize phytosiderophores. The hypothesized activity as Fe-nicotianamine transporters of several YSL members has been demonstrated experimentally by heterologous expression in yeast or by electrophysiology in Xenopus oocytes but, despite numerous attempts, proof of the arabidopsis YSL substrate specificity is still lacking. Reverse genetics, however, has revealed a role for AtYSL members in the remobilization of Cu and zinc from senescing leaves, in the formation of pollen and in the Fe, zinc and Cu loading of seeds. Conclusions Preliminary data on the YSL family of transporters clearly argues in favour of its role in the long-distance transport of metals through and between vascular tissues to eventually support gametogenesis and embryo development.
FEBS Letters | 2004
Catherine Bernard; Nancy Roosens; Pierre Czernic; Michel Lebrun; Nathalie Verbruggen
Thlaspi caerulescens exhibits a unique capacity for cadmium tolerance and accumulation. We investigated the molecular basis of this exceptional Cd2+ tolerance by screening for T. caerulescens genes, which alleviate Cd2+ toxicity upon expression in Saccharomyces cerevisiae. This allowed for the isolation of a cDNA encoding a peptide with homology to the C‐terminal part of a heavy metal ATPase. The corresponding TcHMA4 full‐length sequence was isolated from T. caerulescens and compared to its homolog from Arabidopsis thaliana (AtHMA4). Expression of TcHMA4 and AtHMA4 cDNAs conferred Cd sensitivity in yeast, while expression of TcHMA4‐C and AtHMA4‐C cDNAs encoding the C‐termini of, respectively, TcHMA4 and AtHMA4 conferred Cd tolerance. Moreover, heterologous expression in yeast suggested a higher Cd binding capacity of TcHMA4‐C compared to AtHMA4‐C. In planta, both HMA4 genes were expressed at a higher level in roots than in shoots. However, TcHMA4 shows a much higher constitutive expression than AtHMA4. Our data indicate that HMA4 could be involved in Cd2+ transport and possibly in the Cd hyperaccumulation character.
Journal of Analytical Atomic Spectrometry | 2006
Laurent Ouerdane; Stéphane Mari; Pierre Czernic; Michel Lebrun; Ryszard Łobiński
An original approach based on successive size-exclusion and hydrophilic interaction HPLC (HILIC) was developed to purify traces of Ni species from a plant aqueous extract. The degree of purity achieved was for the first time sufficient for the identification, in a natural sample, of a number of non-covalent metal complexes by electrospray Q-TOFMS/MS. Nickel complexes with malate, citrate, histidine, EDTA and nicotianamine (NA) were identified in the roots, xylem, shoots and their protoplasts of a metal hyperaccumulator plant Thlaspi caerulescens. The quantitative recovery of the most stable of these complexes (with EDTA and NA) allowed their quantitative determination by SEC-ICP-MS.
Plant Physiology | 2015
Pierre Czernic; Djamel Gully; Fabienne Cartieaux; Lionel Moulin; Ibtissem Guefrachi; Delphine Patrel; Olivier Pierre; Joël Fardoux; Clémence Chaintreuil; Phuong Nguyen; Frédéric Gressent; Corinne Da Silva; Julie Poulain; Patrick Wincker; Valérie Rofidal; Sonia Hem; Quentin Barrière; Jean-François Arrighi; Peter Mergaert; Eric Giraud
Several species from an ancient legume lineage independently evolved a novel class of cysteine-rich peptides to impose a differentiation process on their endosymbionts. Nutritional symbiotic interactions require the housing of large numbers of microbial symbionts, which produce essential compounds for the growth of the host. In the legume-rhizobium nitrogen-fixing symbiosis, thousands of rhizobium microsymbionts, called bacteroids, are confined intracellularly within highly specialized symbiotic host cells. In Inverted Repeat-Lacking Clade (IRLC) legumes such as Medicago spp., the bacteroids are kept under control by an arsenal of nodule-specific cysteine-rich (NCR) peptides, which induce the bacteria in an irreversible, strongly elongated, and polyploid state. Here, we show that in Aeschynomene spp. legumes belonging to the more ancient Dalbergioid lineage, bacteroids are elongated or spherical depending on the Aeschynomene spp. and that these bacteroids are terminally differentiated and polyploid, similar to bacteroids in IRLC legumes. Transcriptome, in situ hybridization, and proteome analyses demonstrated that the symbiotic cells in the Aeschynomene spp. nodules produce a large diversity of NCR-like peptides, which are transported to the bacteroids. Blocking NCR transport by RNA interference-mediated inactivation of the secretory pathway inhibits bacteroid differentiation. Together, our results support the view that bacteroid differentiation in the Dalbergioid clade, which likely evolved independently from the bacteroid differentiation in the IRLC clade, is based on very similar mechanisms used by IRLC legumes.
Molecular Plant-microbe Interactions | 2015
Ibtissem Guefrachi; Olivier Pierre; Tatiana Timchenko; Benoît Alunni; Quentin Barrière; Pierre Czernic; José Antonio Villaécija-Aguilar; Camille Verly; Mickaël Bourge; Joël Fardoux; Mohamed Mars; Eva Kondorosi; Eric Giraud; Peter Mergaert
Nodules of legume plants are highly integrated symbiotic systems shaped by millions of years of evolution. They harbor nitrogen-fixing rhizobium bacteria called bacteroids. Several legume species produce peptides called nodule-specific cysteine-rich (NCR) peptides in the symbiotic nodule cells which house the bacteroids. NCR peptides are related to antimicrobial peptides of innate immunity. They induce the endosymbionts into a differentiated, enlarged, and polyploid state. The bacterial symbionts, on their side, evolved functions for the response to the NCR peptides. Here, we identified the bclA gene of Bradyrhizobium sp. strains ORS278 and ORS285, which is required for the formation of differentiated and functional bacteroids in the nodules of the NCR peptide-producing Aeschynomene legumes. The BclA ABC transporter promotes the import of NCR peptides and provides protection against the antimicrobial activity of these peptides. Moreover, BclA can complement the role of the related BacA transporter of Sinorhizobium meliloti, which has a similar symbiotic function in the interaction with Medicago legumes.
Plant Physiology | 2015
Sandrine Fabre; Djamel Gully; Arthur Poitout; Delphine Patrel; Jean-François Arrighi; Eric Giraud; Pierre Czernic; Fabienne Cartieaux
A tropical legume requires the common symbiotic pathway to interact with a nitrogen-fixing bacterium devoid of the canonical nodulation genes. Nitrogen fixation in the legume-rhizobium symbiosis is a crucial area of research for more sustainable agriculture. Our knowledge of the plant cascade in response to the perception of bacterial Nod factors has increased in recent years. However, the discovery that Nod factors are not involved in the Aeschynomene-Bradyrhizobium spp. interaction suggests that alternative molecular dialogues may exist in the legume family. We evaluated the conservation of the signaling pathway common to other endosymbioses using three candidate genes: Ca2+/Calmodulin-Dependent Kinase (CCaMK), which plays a central role in cross signaling between nodule organogenesis and infection processes; and Symbiosis Receptor Kinase (SYMRK) and Histidine Kinase1 (HK1), which act upstream and downstream of CCaMK, respectively. We showed that CCaMK, SYMRK, and HK1 are required for efficient nodulation in Aeschynomene evenia. Our results demonstrate that CCaMK and SYMRK are recruited in Nod factor-independent symbiosis and, hence, may be conserved in all vascular plant endosymbioses described so far.
DNA Research | 2016
Clémence Chaintreuil; Ronan Rivallan; David J. Bertioli; Christophe Klopp; Jérôme Gouzy; Brigitte Courtois; Philippe Leleux; Guillaume Martin; Jean-François Rami; Djamel Gully; Hugues Parrinello; Dany Severac; Delphine Patrel; Joël Fardoux; William Ribière; Marc Boursot; Fabienne Cartieaux; Pierre Czernic; Pascal Ratet; Pierre Mournet; Eric Giraud; Jean-François Arrighi
Aeschynomene evenia has emerged as a new model legume for the deciphering of the molecular mechanisms of an alternative symbiotic process that is independent of the Nod factors. Whereas most of the research on nitrogen-fixing symbiosis, legume genetics and genomics has so far focused on Galegoid and Phaseolid legumes, A. evenia falls in the more basal and understudied Dalbergioid clade along with peanut (Arachis hypogaea). To provide insights into the symbiotic genes content and the structure of the A. evenia genome, we established a gene-based genetic map for this species. Firstly, an RNAseq analysis was performed on the two parental lines selected to generate a F2 mapping population. The transcriptomic data were used to develop molecular markers and they allowed the identification of most symbiotic genes. The resulting map comprised 364 markers arranged in 10 linkage groups (2n = 20). A comparative analysis with the sequenced genomes of Arachis duranensis and A. ipaensis, the diploid ancestors of peanut, indicated blocks of conserved macrosynteny. Altogether, these results provided important clues regarding the evolution of symbiotic genes in a Nod factor-independent context. They provide a basis for a genome sequencing project and pave the way for forward genetic analysis of symbiosis in A. evenia.
Scientific Reports | 2018
Djamel Gully; Pierre Czernic; Stéphane Cruveiller; Frédéric Mahé; Cyrille Longin; David Vallenet; Philippe François; Sabine Nidelet; Stéphanie Rialle; Eric Giraud; Jean-François Arrighi; Maitrayee DasGupta; Fabienne Cartieaux
Nod factors (NF) were assumed to be indispensable for the establishment of a rhizobium-legume symbiosis until the discovery that certain Bradyrhizobium strains interacting with certain Aeschynomene species lack the canonical nodABC genes required for their synthesis. So far, the molecular dialogue between Aeschynomene and its symbionts remains an open question. Here we report a time course transcriptional analysis of Aeschynomene evenia in response to inoculation with Bradyrhizobium ORS278. The NF-independent symbiotic process was monitored at five time points between bacterial infection and nodule maturity. The five time points correspond to three specific events, root infection by crack entry, nodule organogenesis, and the establishment of the nitrogen fixing process. During the third stage, about 80 NCR-like genes and eight symbiotic genes known to be involved in signaling, bacterial infection or nodulation regulation were highly expressed. Comparative gene expression analyses at the five time points also enabled the selection of genes with an expression profile that makes them promising markers to monitor early plant responses to bacteria. Such markers could be used in bioassays to identify the nature of the bacterial signal(s). Our data represent valuable resources for investigation of this Nod factor-independent symbiosis.
Analytical Chemistry | 2003
Véronique Vacchina; Stéphane Mari; Pierre Czernic; Laurence Marquès; Katia Pianelli; Dirk Schaumlöffel; and Michel Lebrun; Ryszard Łobiński
New Phytologist | 2004
Laurence Marquès; Magalie Cossegal; Stéphanie Bodin; Pierre Czernic; Michel Lebrun